The BLOAT Book

David M. Whitlock

October 20, 1999

Introduction

Nate Nystrom is the man! No question about it. In less than one year he sat
down, designed, and implemented BLOAT, the Bytecode-Level Optimizer
and Analysis Tools. Yes, it’s a horrible acronym for software that is supposed
to make Java run faster, but it works. In that year, Nate managed to writing
BLOAT, run some benchmarks on BLOATed code to demonstrate its worth,
compose he thesis, and escape to Silicon Valley.

A couple of months later I came on the scene as a new graduate student.
Nate’s and my advisor, Tony Hosking, pointed me at the BLOAT source
code and said, “Okay. Learn it.” So, there I was, presented with 50,000
lines of Java code...that were completely undocumented! Now, Nate is a
great guy and all, but in his documentation skills leave something to be
desired. I'll never forget the first time I met Nate and he tried to convince
me that his code was “self-documenting”. Right.

After spending several months trying to figure out what BLOAT was all
about, I finally decided to get serious and write this book. I knew that if
I was ever going to use and improve BLOAT, I would need a solid under-
standing of the optimizations it performs and how they are implemented. 1
also wanted to make BLOAT more approachable so that other people could
make use of its modeling and optimization facilities. That, and the fact that
I’m a stickler for documentation.

It is assumed that the reader has a working knowledge of the Java Vir-
tual Machine Specification. If not, I recommend the appropriately-named
Java Virtual Machine Specification by Tim Lindholm and Frank Yellin.
The BLOAT Book was written for BLOAT 0.8.0 and is organized into two
parts. The first part focuses on how BLOAT models Java classes. Chapter
1 describes BLOATs class reflection mechanism and describes how BLOAT
loads classes from files. Chapter 2 gives a brief overview of java.util pack-
age whose classes are used extensively in BLOAT and describes BLOAT’s
own utility classes. Chapter 3 shows how BLOAT can be used to edit Java
classes.

BLOAT’s expression tree representation of Java instructions is discussed
in Chapter 4. Chapter 5 describes the control flow graph used to model
Java methods. Chapter 6 covers Static Single Assignment form. Chapter 7
shows how BLOAT generates Java bytecodes from a control flow graph.

The second part of the book gives details about the optimizations that
BLOAT performs. Both the optimization algorithms and their implementa-
tions are discussed. Chapter 8 covers a number of optimizations including
dead code elimination, value numbering, constant and copy propagation,

and peephole optimizations. Chapter 9 describes type inferencing and type-
based alias analysis. The book concludes with an in-depth description of the
partial redundancy elimination algorithm which is at the heart of BLOAT.
Throughout the book I have tried to give examples of what BLOAT does.
To save ink, I have ommitted “EDU.purdue.cs” from the names of BLOATs
classes. Each chapter concludes with a brief summary.

BLOAT is an amazing piece of software. It does a lot of neat things and
it is obvious that Nate put a lot of time and energy into it. And now, it’s
understandable.

David Whitlock
October 2, 1999

Contents

I Modeling Java Classes

1

Modeling the Java Classfile

1.1

1.2

1.3

The Reflection Mechanism
1.1.1 Interfaces in the Reflection Package
1.1.2 The Constant Pool
1.1.3 Exception Handlers
1.1.4 Debugging Information
Loading Classes from Files.
1.2.1 Modeling a Classfile
1.2.2 Modeling Attributes oL
1.2.3 Modeling Fields.
1.2.4 Modeling Methods
Summary e e e e

Utility Classes

21

2.2

The java.util package
2.1.1 Utility Interfaces
2.1.2 Implementations,
BLOAT Utility Classes« oo i v v v i o
2.2.1 Representing a Directed Graph
2.2.2 More Collection Classes

Editing Java Classfiles

3.1
3.2

3.3

Editing Many Classes
Editing Piecesof a Class
3.2.1 Modeling Parts of the Classfile
3.2.2 Editing Class Information
3.2.3 Editing Field Information
Modeling Methods oL

11

13
13
13
14
15
15
16
16
17
18
18
19

21
21
21
22
23
23
24

CONTENTS

3.3.1 Java Virtual Machine Instructions 28
3.3.2 Editinga Method, 30
34 Summaryl e 31
Expression Trees 33
4.1 A Node In an Expression Tree. 33
4.2 Visiting the Nodes In an Expression Tree 34
4.3 Simulating the Operand Stack 34
44 Node Types o i i i ittt e 35
4.5 Expressionso ..o e 35
4.5.1 Basic Expressions. 36
4.5.2 Expressions For Calling Methods 37
4.5.3 Expressions That Check Things. 37
4.5.4 Boolean Expressions 38
4.5.5 Expressions That Define Local Variables 38
4.6 Statements Lo 39
4.6.1 Statements That Change Control Flow 40
4.6.2 ¢-Statements 42
4.7 Interfaces Used In the Expression Tree 42
4.8 Constructing the Expression Tree 43
4.8.1 Adding Instructions to the Tree 43
4.8.2 Visiting Instructions and Building the Tree 44
4.9 Summaryol e e e e e 52
Control Flow Graphs 53
51 Background oL 53
52 BasicBlocks. oo oo 54
5.3 Exceptions 55
5.4 Modeling Control Flow Graphs 56
5.5 Constructing the Control Flow Graph 57
5.5.1 Building Basic Blocks, 57
5.5.2 Dealing With Exception Handlers 57
553 AQuickRegroup., 59
5.5.4 Building Expression Trees 59
5.6 Initializing the Control Flow Graph. 61
5.6.1 Building the Dominator Tree 61
5.6.2 Computing the Dominance Frontier 62
5.6.3 Preparing for ¢-statement Insertion 63
5.6.4 Splitting Irreducible Loops 64

5.6.5 Splitting Reducible Loops 65

CONTENTS 7

5.6.6 Determining the Types of Blocks 66
5.6.7 DBuilding the Loop Tree 66
5.6.8 PeelingLoops. 66

5.6.9 Removing Critical Edges. 68
5.6.10 Inserting Stores after conditional statements 68
5.6.11 Inserting Stores Before Protected Regions 71
5.6.12 Verifying the Correctness of the Control Flow Graph . 71
5.6.13 Committing Changes to the Control Flow Graph . . . 72
5.6.14 Looking at Control Flow Graphs 72

5.7 Control Flow Graph Examples 76
5.7.1 A Simple Example, 76
5.7.2 Stack Variables i
5.7.3 Exceptions 78
574 A Finally Clause 80

5.8 Summary e 80
6 Static Single Assignment Form 85
6.1 Background 85
6.1.1 Placing ¢-functions 85
6.1.2 Naming Variables In SSA Form 86
6.1.3 Deconstructing SSA Form 87
6.1.4 Other ¢-functions, 87

6.2 Constructing SSA Form 89
6.2.1 Placing ¢ Statements 90

6.3 Renaming SSA Variables. 91
6.3.1 Modifying the Blocks 93

6.4 Examples of SSA Form. 93
6.4.1 An Example ¢.-statement 95

6.5 Summary 97
7 Code Generation 99
7.1 Liveness Analysis 99
7.2 Register Allocation o oL, 100
7.3 Code Generation 102
7.3.1 Auxiliary Methods 102
7.3.2 Replacing ¢ Statements 102
7.3.3 Simplifying Control Flow 103
7.3.4 Allocating Subroutine Return Addresses 104
7.3.5 Generating Code, 105

T4 Summary oco. i e e e e e e e e 110

8 CONTENTS

II Optimizing Java Classes 111
8 Program Transformations 113
8.1 Array Initialization Compaction. 113
8.2 Dead Code Elimination 115
8.2.1 An Example of Dead Code Elimination 116

8.3 Value Numbering 117
8.3.1 The SSA Graph 117

8.3.2 Implementationo 120

84 ValueFolding 125
8.5 Expression Propagation, 125
8.5.1 An Example of Expression Propagation 126

8.6 Eliminating Persistent Checks 127
8.7 Peephole Optimizations 129
8.8 Summary 131

9 Type-Based Alias Analysis 133
9.1 BLOAT’s Class Hierarchy 133
9.2 Type Inferencing L. 134
9.2.1 An Example of Type Inferencing 137

9.3 Type-Based Alias Analysis. 139
9.3.1 Implementation 140

9.4 Summary i e e 141

10 Partial Redundancy Elimination 143
10.1 Backgroundo o 143
10.1.1 P-insertionl 144

10.1.2 Renaming oo 146

10.1.3 Computing Down Safety 148

10.1.4 Will Be Available. 151

10.1.5 Finalize 152

10.1.6 Code Motion 154

10.1.7 But, wait. There’smore! 155

10.1.8 PRE for Access Paths 158

10.2 Implementation 158
10.2.1 Kills o oo 159

10.2.2 Modeling ®-statements 159

10.2.3 The Worklist 159

10.2.4 Is an Expression First Order? 160

CONTENTS

10.2.6 Inserting ®-statements

10.3 That’s all, folks .
10.4 Examples of PRE

10

CONTENTS

Part 1

Modeling Java Classes

11

Chapter 1

Modeling the Java Classfile

Before BLOAT can analyze and optimize Java classes, it must read the
class’s raw bytecode. T'wo packages in BLOAT, bloat.reflect and bloat.
file are used to read a Java class file from disk and model it using various
classes.

1.1 The Reflection Mechanism

BLOAT provides a reflection mechanism to abstractly model access to a
Java class. It is provided so that information about a class may be obtained
independently of how it is stored. Currently, classes are only loaded into
BLOAT from files, but the reflection mechanism allows classes to be loaded
from a network or another virtual machine. As such, bloat.reflect pro-
vides several interfaces through which a class may be accessed and several
classes that represent fundamental parts of a Java class such as the constant
pool.

1.1.1 Interfaces in the Reflection Package

There are four interfaces in bloat.reflect that specify a set of methods
through which a class may be accessed and modified. bloat.reflect.
ClassInfo grants access to information about a class’s superclass, the in-
terfaces it implements, its fields and methods, its modifiers, and its con-
stant pool. bloat.reflect.ClassInfo is implemented by bloat.file.
ClassFile (see section 1.2.1). Access to a class is further refined by bloat.
editor.ClassEditor (see section 3.2.2).

A bloat.reflect.ClassInfoLoader provides one method, loadClass,

13

14 CHAPTER 1. MODELING THE JAVA CLASSFILE

that loads a class of a given name. bloat.reflect.FieldInfo allows a
method’s name and type (represented as indices into the constant pool) as
well as its modifiers to be accessed and modified. FieldInfo is implemented
by bloat.file.Field (see section 1.2.3). bloat.reflect.MethodInfo grants
access to information about a method such as its declaring class, its name
and type, and the types of any exceptions it may throw (all represented
as indices into the constant pool). MethodInfo is implemented by bloat.
file.Method (see section 1.2.4).

Modifiers (a.k.a. access flags)

The bloat.reflect.Modifiers interface contains a number of constant

(public static final) shorts that are used as masks to determine whether
a class, method, or field has certain attributes (such as being public, private,

final, static, etc.).

1.1.2 The Constant Pool

Each Java class has a number of constants associated with it. These con-
stants may be the initial values of variables, numbers that are frequently used
in the program, or the name of the class itself. These constants are grouped
together into the class’s constant pool. The BLOAT reflection mechanism
models constants in the constant pool with bloat.reflect.Constant. Each
Constant consists of a tag and a value. All values are a java.lang.0Object
and tags fall into one of several categories:

UTF8 Represents constant string values in a special compact format. BLOAT
represents its value as a String. You can read all about it in [LY96].

CLASS Represents a class or interface. Its value is an Integer representing
the index into the constant pool of the name (a UTF8) of the class or
interface.

FIELD REF/METHOD REF/INTERFACE METHOD REF Represents a field or method.
Its value is an array of two ints. The first is the index into the con-
stant pool specifying the class/interface in which the field/method is
declared. The second is an index into the constant pool indicating the
name and type of the field/method.

STRING Represents a constant java.lang.String. Its value is an Integer
that is the index into the constant pool for its UTF8 string constant.

1.1. THE REFLECTION MECHANISM 15

INTEGER/FLOAT Represents a four-byte (int or float) numeric constant.
Its value is an Integer or Float.

LONG/DOUBLE Represents an eight-byte (Long or double) numeric constant.
Its value is an Long or Double.

NAME_AND_TYPE Represents a field or method without specifying which class
or interface to which it belongs. Its value is an array of two ints. The
first int is an index into the constant pool indexing a UTF8 string
that specifies the name of the field or method. The second is an index
into the constant pool indexing a UTF8 string representing the field’s
or method’s descriptor.

1.1.3 Exception Handlers

A method’s bytecode contains instructions for each exception handler. In
the classfile, exception handler information is grouped together in exception
table. Entries in that table are modeled in BLOAT with bloat.reflect.
Catch. Instances of Catch are created by bloat.file.Code (see section
1.2.4).

An exception handler consists of the starting and ending indices into
the code array indicating the code region in which the exception handler is
active. This is equivalent to the exception handler’s try block. A Catch
object also stores the index into the code array of the start of the exception
handler and the index into the constant pool of the type of the exception
that is caught.

1.1.4 Debugging Information

The Java virtual machine specification gives guidelines to the format of two
kinds of debugging information. The first kind is found in the the line
number table attribute (see section 1.2.4) of the code array. It is modeled
by bloat.reflect.LineNumberDebugInfo and consists of a line number
in a Java source file and an index into the code array specifying the first
instruction corresponding to that line.

Another kind of debugging information discussed in the virtual ma-
chine specification is local debugging information. This information al-
lows a debugger to obtain the value of a given local variable during pro-
gram execution and is modeled by bloat.reflect.LocalDebugInfo. A
LocalDebugInfo object consists of an index into the code array at which
the variable must have a value and length (number of instruction) during

16 CHAPTER 1. MODELING THE JAVA CLASSFILE

which the variable will have a value. Two indices into the constant pool,
corresponding to the name of the local variable and its type descriptor,
are also maintained. Finally, the index of variable itself (i.e. which num-
ber local variable it is) is stored in LocalDebugInfo. Instances of class
bloat.file.LocalVariableTable (see section 1.2.4) contain an array of
LocalDebugInfo.

1.2 Loading Classes from Files

The classes in bloat.file implement the interfaces of the reflection mech-
anism. Specifically bloat.file provides classes that read a classfile from a
file on disk and model it.

bloat.file.ClassFileLoader does the work of loading a class and cre-
ating a ClassInfo (see section 1.1.1) object representing the class. If the
class is not found, a ClassNotFoundException is throw. A ClassFile-
Loader searches its class path (see method setClassPath) for classes to
load. The class path defaults to the JVM’s class path (the java.class.path
property). Any class files that are written to disk (“committed”) are placed
in the output directory (see method setOutputDir).

The method loadClass in class ClassFileLoader searches for a class
file of a given name. A class may be specified with its full package name (e.g.
java.lang.String) or by its class file (e.g. myclass/Test.class). With
the help of private methods 1loadClassFromFile and loadClassFromStream
it creates a java.io.File object representing the file and creates a new
ClassInfo object from the file’s stream.

ClassFilelLoader maintains a cache of the ClassFiles that it has most
recently loaded. Note that ClassFile implements ClassInfo (see section
1.2.1). If the class file is not found in the cache, the class path is searched.
The class path may contain directories, Jar files, or Zip files. If the class is
not found along the class path, then the current directory is searched as a
last resort.

1.2.1 Modeling a Classfile

A classfile is read from disk and is modeled using a bloat.file.ClassFile.
The contents of a ClassFile are read from a java.ioDataInputStream.
Each ClassFile knows the ClassFileLoader that loaded it. A ClassFile
implements the reflect.ClassInfo interface (see section 1.1.1). A classfile
is read from disk and its contents are modeled using objects of various classes

1.2. LOADING CLASSES FROM FILES 17

as discussed below. If while during the reading something goes wrong, a
bloat.reflect.ClassFormatException is thrown.

For the most part, a ClassFile object models the class file as it is
represented on disk. The details of the classfile format can be found in
[LY96]. A classfile’s “header” consists of its magic number (0OxCAFEBABE)
and its major and minor number. The constants in a classfile’s constant
pool are read and are modeled as an array of instances of bloat.reflect.
Constant. A classfile’s modifiers (also known as access flags) are an unsigned
short whose bits determine whether or not the class is public, final, an
interface, etc. Information such as a class’s superclass and the interfaces it
implements are represented by indices into the constant pool. A class’s fields
(i.e. a class’s data members, see section 1.2.3) are represented by an array
of file.Field. A class’s methods (see section 1.2.4) are represented by an
array of bloat.file.Method. A class’s attributes (see section 1.2.2) give
information about the class and are modeled by an array of bloat.file.
Attribute. Attributes are used to represent miscellaneous information such
as the name of the source file from which a classfile was compiled.

A classfile modeled by a ClassFile object can be written to disk by
invoking the commit method. It looks to its ClassFileLoader to get the
File to which it is written.

1.2.2 Modeling Attributes

Attributes are general description mechanisms used in a Java class file.
Classes, fields, methods, and bytecode all have attributes. BLOAT mod-
els attributes with bloat.file.Attribute. Each attribute consists of the
name of the attribute (represented as an index into the constant pool) and
the length of the attribute (not including the space to store the name and
the length). Attribute is extended to represent code (see section 1.2.4),
exceptions (see section 1.2.4), a constant value (see section 1.2.3), as well as
debugging information.

Generic Attributes

The Java virtual machine specification allows Java implementors to use ar-
bitrary attributes for their own purposes (e.g. additional debugging infor-
mation). BLOAT uses bloat.file.GenericAttribute to model these at-
tributes. GenericAttribute is a subclass of Attribute and therefore has a
name (index into the constant pool) and a length. It also contains an array
of bytes that holds the generic attribute’s raw data.

18 CHAPTER 1. MODELING THE JAVA CLASSFILE

1.2.3 Modeling Fields

A classfile represents its data members by a field. The bloat.file.Field
class models fields in a Java classfile. Each Field is read from a java.io.
DataInputStream by a ClassFile object (see section 1.2.1). A field must
know about the ClassFile to which it belongs so that it may access its
constant pool, etc.

Each field has a bit vector whose bits determine the field modifiers (pub-
lic, private, static, final, etc.). The field’s name and descriptor are repre-
sented by indices into its class’s constant pool (see section 1.1.2). A field may
have attributes associated with it (see section 1.2.2). A common attribute
of a field is its constant value (see section 1.2.3).

The Constant Value Attribute

A constant value attribute is represented by bloat.file.ConstantValue
which is a subclass of Attribute. A ConstantValue is read from a java.io.
DataInputStream and has a name (index into the constant pool) and a
length associated with it. It also has an index into the constant pool that
represents the constant value itself.

1.2.4 Modeling Methods
The Method Itself

Methods in a classfile are modeled with instances of bloat.file.Method.
A ClassFile reads method information from a java.io.DataInputStream.
A field has an unsigned short whose bits represent its modifiers (access
flags). Modifiers determine whether or not a method is public, private,
static, final, synchronized, etc. A method’s name and its value are both
represented as indices into the constant pool. A method’s value is a method
descriptor representing the types of the method’s parameters and its return
type. A method’s attributes are modeled as an array of Attribute (see
section 1.2.2). Two special attributes that methods have are code (modeled
by Code) and exceptions (modeled by Exceptions).

The Code Attribute

A code attribute contains a method’s instructions (bytecodes) and other
auxiliary information. A code attribute is modeled in BLOAT by bloat.
file.Code, a subclass of Attribute. Like all attributes, a code attribute

1.3. SUMMARY 19

has a name (index into the constant pool) and a length. Code also con-
tains a the maximum number of words (maxStack) that can be on the
operand stack during the method’s execution and the number of local vari-
ables (maxLocals) the method has including its parameters. The actual code
itself is modeled as an array of bytes. Exception handlers in the method
are modeled by an array of Catch instances (see section 1.1.3). Code may
also have attributes. Two interesting attributes are the line number table
and the local variable table.

The Line Number Table Attribute

The line number table attribute is an optional attribute that may be used by
Java debuggers to determine which portion of the code array corresponds to
which line number in the original source file. BLOAT models it by bloat.
file.LineNumberTable. In addition to having a name and length, it essen-
tially consists of an array of LineNumberDebugInfo (see section 1.1.4).

The Local Variable Table

The local variable table is an optional attribute that may be used by Java de-
buggers to determine the value of a given local variable during program exe-
cution. BLOAT represents this table by bloat.file.LocalVariableTable.
Like all attributes, LocalVariableTable has a name and a length. It also
contains an array of LocalDebugInfo (see section 1.1.4).

The Exceptions Attribute

A method’s exceptions attribute indicates which checked exceptions a method
may throw. It is modeled by bloat.file.Exceptions. An Exceptions
consists of a name (index into the constant pool) and a length. Addition-
ally, it consists of an array of int’s that holds the indices into the constant
pool that represent information about the types of exceptions that may be
thrown.

1.3 Summary

The classes in bloat.reflect and bloat.file are used to model Java
classes at the lowest level. bloat.reflect provides an abstract interface
through which class file data may be accessed and modified. It also models
several essential portions of a Java class such as its constant pool. bloat.

20 CHAPTER 1. MODELING THE JAVA CLASSFILE

file implements the reflection interface to work with classes that reside in
a file. It faithfully represents classes according to [LY96]. At this stage,
methods are still represented as raw bytes, constants in the constant pool
are referred to by their indices, and exceptions are modeled as offsets into
the code array.

Chapter 2

Utility Classes

BLOAT uses a number of utility classes to help it model and optimize Java
classfiles. Many of these classes come from the JDK1.2 version of the java.
util package. Others are unique to BLOAT.

2.1 The java.util package

Starting in JDK1.2 (“Java 2”), the java.util package came with a number
of utility classes that gave greater power and flexibility over classes such as
java.util.Hashtable and java.util.Enumerator. The new utility classes
are used extensively in BLOAT!.

2.1.1 Utility Interfaces
Collections

The Collection interface represents a group of Objects. It has methods to
add and remove Objects, search it for a given Object, to return an array of
the Objects in the Collection, and to get an Iterator (see section 2.1.1)
over the Collection.

Collection is subclassed by List and Set. A List is an ordered collec-
tion. Each element in the list has an integer index. In addition to obtaining
an Iterator over a List, one may also obtain a ListIterator (see section

Tn fact, Nate once admitted to me that he might have gone a little overboard with the
util classes. Unfortunately, in the Spring of 1998 when he was coding BLOAT, JDK1.2
was not finalized. As a result, he used the beta source code of the classes. When the final
version was released, some changes were made to the API and I had fun fixing those bugs.
Not really.

21

22 CHAPTER 2. UTILITY CLASSES

2.1.1). A Set is a collection that contains no duplicate elements. If one
attempts to add a duplicate Object to a Set, a ClassCastException is
thrown.

Iterators

JDK1.1 provided java.util.Enumeration which allowed you to traipse
through a bunch of Objects. JDK1.2 improves on this concept with java.
util.Iterator interface. A thorough description of the iterator pattern is
given in [GHJV95]. An Iterator iterates over the elements of a Collection
(see section 2.1.1) and allows you to remove an element from the underlying
Collection once the next method has been called.

java.util.ListIterator provides more flexibility. A ListIterator
has indexed elements, can traverse a List in either direction and can insert,
remove, or modify elements in the List. Note that when an element is added
to a ListIterator, it is added so that a call to next would be unaffected
and a call to previous would return the added value.

Comparing Objects

The java.util.Comparator interface has two methods, compare and equals.
A Comparator is used to impose a total ordering on a Collection. Objects
that implement Comparable may also be compared to other objects. BLOAT
doesn’t use these guys too much, however the concept is used in classes such
as bloat.trans.NodeComparator (see section 8.3.2).

Maps

java.util.Map is an interface for classes that map one Object, the key, to
another Object, the value. A Map may not contain duplicate keys. A Map
may be viewed as a set of keys, a collection of values, or a set of key-value
mappings. A Map basically behaves like a hash table.

2.1.2 Implementations

JDK1.2 implements the above interfaces in a number of different ways. Dif-
ferent implementations have different characteristics (e.g. a hash table ver-
sus a red-and-black trees), but have the same interface.

Several abstract classes (AbstractCollection, AbstractList, Abstract-
Map, and AbstractSet) are supplied to make the job of implementing the
java.util interfaces easier. An AbstractSequentiallList is an abstract

2.2. BLOAT UTILITY CLASSES 23

class of List implementations that are sequential in nature (e.g. a linked
list as opposed to an array).

ArrayList implements the List interface and allows you to change its
size. It is kind of like a Vector. LinkedList implements the List interface
and provide methods so that it may behave like a stack or queue.

HashMap implements the Map interface. It is roughly equivalent to a hash
table, and does not guarantee the order of its mapping. TreeMap implements
the Map interface using a red-and-black tree. Its keys are sorted in ascending
order.

It is left as an exercise to the reader to figure out what HashSet and
TreeSet are. I knew you could do it.

Other Interesting Classes

java.util.Arrays provides a number of static methods for dealing with
(e.g. searching and sorting) arrays. java.util.Collections provides static
methods for dealing with (e.g. search, copy, sort) Collections.

2.2 BLOAT Utility Classes

In addition to the classes that come with JDK1.2, there are several utility
classes that were written especially for BLOAT.

2.2.1 Representing a Directed Graph

bloat.util.Graph represents a directed graph of GraphNodes. A GraphNode
is added to a Graph, then an edge between that node and another is added.
Each node in the graph has a unique key associated with it. For instance, if
the Graph represents a control flow graph (see section 5.4), each GraphNode
would have a basic block associated with it. When a GraphNode is added
to a Graph, the graph is considered modified. Before any information about
the graph can be gleaned, such as its pre- and post-order traversals, must
be recalculated. To facilitate this, Graph maintaines a modification count of
the nodes and edges in the graph.

A GraphNode contains a set of successors and predecessor as well as its
index in a pre-order and a post-order traversal of the Graph in which it
resides. All of this information is calculated by a GraphNode’s Graph.

A Graph may have a number of roots and reverse roots. Each Graph
maintains a pre-order and post-order traversal of itself. This is used to de-
termine the indices of its nodes. Through Graph, one can obtain information

24 CHAPTER 2. UTILITY CLASSES

about its nodes such as their indices in a pre-order or post-order traversal
of the graph and two nodes ancestor/descendent relationship.

2.2.2 More Collection Classes

bloat.util.IdentityComparator has one method, compare, that com-
pares two Objects using the System.identityHashCode method, which
returns the hash code that would be returned by Object.hashCode() re-
gardless if a class overrides hashCode. I don’t think it is ever used.

bloat.util.ImmutableIterator is an Iterator whose contents cannot
be changed. Its remove method has no effect.

bloat.util.ResizableArrayList is a subclass of ArrayList that dif-
fers only in the fact that empty space is padded with null values. This way,
the size method will return the length of the array not just the number of
elements in it.

bloat.util.UnionFind is used represent disjoint sets of integers. There
are two common operations on disjoint sets that we want to be executed
efficiently. We want to be able to obtain the set in which a given integer
resides (“find”) and we also want to combine the contents of two disjoint
sets (“union”).

UnionFind represents a disjoint set as a tree of Nodes?. Each Node knows
its parent, child, and integer value. A Node’s parent is the root of the tree
in which it resides. Each Node also has a “rank” associated with it that
approximates the size of the logarithm of the a Node’s subtree (i.e. the
height of the subtree). The rank is used when combining (unioning) two
sets. When two sets are unioned, the root with the smaller rank is made to
point to the root with the larger rank.

UnionFind has methods to find the set in which an integer resides, to
determine whether or not two integers are in the same set, and to compute
the union of two sets. UnionFind is used to determine the type (i.e. HEADER,
NON_HEADER, etc.) of basic blocks in method setBlockTypes of class bloat.
cfg.FlowGraph (see section 5.6.6).

2Node is a class that is local to UnionFind and should not be confused with bloat.
tree.Node.

Chapter 3

Editing Java Classfiles

Once Java classes have been read from a file on disk, or wherever else they
may reside, they are edited using the classes in the bloat .editor package.

3.1 Editing Many Classes

bloat.editor.Editor is a central repository for all information regard-
ing editing classes. It maintains a Collection (see section 2.1.1) of the
names of classes it knows about. It also knows about a bloat.reflect.
ClassInfoLoader (see section 1.1.1) that it uses to load classes.

An Editor maintains a number of caches of various editing objects.
These caches are implemented as mappings between a reflection object
(e.g. bloat.reflect.ClassInfo) and its corresponding editing object (e.g.
ClassEditor). Each editing object also has a reference count associated
with it. Each time an editing object is accessed via one of the “edit” meth-
ods (e.g. editField), its reference count is incremented. The “release”
methods decrement the reference count and if it equals zero, the editing ob-
ject is removed from the cache. When editing is complete, an editing object
is committed. Committed editing objects are written back to where they
came from and are removed from their cache. The hierarchy method re-
turns a bloat.tbaa.ClassHierachy object representing the class hierarchy
of all classes in the Editor (see section 9.1).

25

26 CHAPTER 3. EDITING JAVA CLASSFILES

3.2 Editing Pieces of a Class

3.2.1 Modeling Parts of the Classfile

BLOAT’s reflection mechanism models the contents of a Java classfile. How-
ever, it only goes so far. Recall that instructs are modeled as arrays of byte
(see section 1.2.4) and that constants in a class’s constant pool are just tags
and values (see section 1.1.2). The editing mechanism further refines the
representation of a Java classfile.

The Constant Pool

A class’s constant pool is modeled by bloat.editor.ConstantPool. A
ConstantPool is created from an array of bloat.reflect.Constants (see
section 1.1.2).

ConstantPool maintains several pieces of information about the con-
stants in the constant pool. A mapping between constants and their in-
dices is maintained for the ease of adding new constants to the constant
pool. It maintains an list (bloat.util.ResizableArrayList) of the con-
stants in their Constant form. Constants are not resolved until they are
needed. Constants are resolved to an instance of Type, String, MemberRef,
or NameAndType.

Type Descriptors

A (type) descriptor is a string that represents the type of a field or method.
They have a funky format that is described in detail in [LY96]. Basically,
they encode the type of a field or method using a symbolic notation. For
example, a field int x[] has the type descriptor

(1.

The method String f(int a, boolean b, Object c) has the type
descriptor

(IZLjava/lang/0Object;)Ljava/lang/String;.

BLOAT models a type descriptor using bloat.editor.Type. A Type
can be created from a String, a char representing a primary type, or an
int representing a primary type. The latter two are used in bloat.codegen.
CodeGenerator (see section 7.3).

3.2. EDITING PIECES OF A CLASS 27

Type has a number of constants that are used to identify and build type
descriptors. It also has methods to determine whether or not the Type
it represents an object, array, boolean, etc., the number of slots on the
stack it occupies (stackHeight), and methods that are specialized for type
descriptors of arrays and methods.

Name And Type Information

The type of a method or field are represented in BLOAT by a Type. The
type descriptor is grouped together with the name of the field or method to
form a bloat.editor.NameAndType. A NameAndType simply consists of a
String representing the name and a Type representing the type.

Field and Method Information With Class

A field or method may be represented along with the class in which it is
declared. bloat.editor.MemberRef embodies this representation by asso-
ciating a NameAndType of a method or field with the Type of the class in
which it is declared.

3.2.2 Editing Class Information

bloat.editor.ClassEditor gives finer-grain access to a class than bloat.
reflect.ClassInfo does (see section 1.1.1). A ClassEditor is based on a
ClassInfo object and knows the Editor that “owns” it (see section 3.1).

A ClassEditor knows its type, the type of its superclass, and the types
of the interfaces it implements. All of these types are represented by objects
of Type. It also has a ConstantPool. Through a ClassEditor one can
easily determine the class’s access flags (see section 1.1.1).

3.2.3 Editing Field Information

A class’s field is edited with a bloat.editor.FieldEditor. A FieldEditor
is created from a ClassEditor and a bloat.reflect.FieldInfo (see sec-
tion 1.1.1). Each FieldEditor knows its name, type, and constant value
(if appropriate). It obtains this data from constants in its class’s constant
pool. A FieldEditor has methods to access and change its modifiers (e.g.
public, private, final, static, etc. see section 1.1.1)

28 CHAPTER 3. EDITING JAVA CLASSFILES

3.3 Modeling Methods

Java methods have a lot of stuff. They’ve got names, and code, and excep-
tions, and parameters, and all sorts of nastiness. And we’ve got to model it
all!

3.3.1 Java Virtual Machine Instructions
Dealing With Opcodes

There are a lot of opcodes in the Java Virtual Machine. To keep track
of them all, the bloat.editor.0Opcode interface defines constants to name
them all. The opc_z constants represent the numerical values of the opcodes.
Opcodes that are similar (e.g. all opcodes that load integers) are grouped
together with constants of the form opcx_z. The actual mapping is stored
in opcXMap. An array of Strings, opcNames, gives the names of all the
opcodes. Finally an array of bytes, opcSize, gives the size of each opcode.

Local Variables

In Java, method variables and parameters are represented by local variables.
BLOAT models local variables with bloat.editor.LocalVariables. Each
LocalVariable has a name (String), a Type descriptor, and a number
associated with it (index). Only local variables with debugging information
have a name and type. All local variables have an index.

Labels

bloat.editor.Label is used to label an JVM instruction. Each Label
consists of an integer index indicating its offset into the code array and a

boolean that determines whether or not it starts a basic block (see section
5.2).

Instructions

BLOAT models Java virtual machine instructions with the bloat.editor.
Instruction class that implements the Opcode interface. Each Instruction
consists of an integer opcode and an optional Object operand. The operand
may be an Integer, Float or one of the special operand types (described
below) used to express multiple operands.

An Instruction can be created from an opcode and an operand, or
it may be read from an array of bytes. This form of the Instruction

3.3. MODELING METHODS 29

constructor also requires the targets and lookups of any instructions that
change control flow, (e.g. ifs, return, tableswitch), any local variables the in-
struction may reference, and the constant pool. In BLOAT this information
is compiled in the munchCode method of MethodEditor (see section 3.3.2).

The Instruction class has several methods to determine what kind of
instruction (conditional jump, store, etc.) it is. It also has several utility
methods for dealing with byte data (e.g. turning four bytes into an int).
It also has a visit method that allows the Instruction to be visited by
an InstructionVisitor (see section 3.3.1).

Representing Switches

The Java virtual machine instruction tableswitch and lookupswitch are unique
in that they have a variable-length operand. In order to accommodate this,
the bloat.editor.Switch is used to represent their operands. Each Switch
consists of a mapping between targets (an array of Labels) and values (an
array of ints), as well as a default target. See [LY96] for more details.

Instructions that Increment

Like the switching instructions, the integer increment instruction (iinc) has
more than one operand: a local variable to increment and the amount by
which to increment. This information is encapsulated by the bloat .editor.
IncOperand class. Instances of IncOperand contain a LocalVariable ob-
ject and an integer specifying the increment.

Creating Multidimensional Arrays

The multianewarray instruction creates a new multidimenional array. As
such, it requires a type descriptor for the type of the array and the num-
ber of dimensions in the array. This information is modeled by the bloat.
editor.MultiArrayOperand class. Each instance of MultiArrayOperand
has a Type representing the type of the multidimensional array and an in-
teger representing the number of dimensions.

Visiting Instructions

There are over 200 different instructions for the Java virtual machine. Some
of the operations that BLOAT performs (such as simulating a program exe-
cution) require knowledge about the behavior of individual instruction. One
way of representing the differences between instruction is to have a separate

30 CHAPTER 3. EDITING JAVA CLASSFILES

class for each instruction. However, that would mean create over 200 classes
for instructions that, for the most part, look and act the same. Instead we
use a visitor.

A visitor! is another design pattern [GHJV95]. An bloat.editor.
InstructionVisitor is used to perform operations on a per-instruction
basis. InstructionVisitor has a method, visit_opcode, for every instruc-
tion that takes an Instruction parameter. The visitor pattern simulates
double dispatching with the visit method. For instance, the Instruction
class has a visit method that takes an InstructionVisitor as an argu-
ment. The visit method switches on the opcode of the Instruction and
calls the appropriate visit_opcode method of the InstructionVisitor.

Some of the benefits of using the visitor pattern are that functionality is
added to classes without the classes being modified and that this function-
ality is centralized in one class (with lots of methods), the visitor. Visitors
are used in several places in BLOAT.

Modeling try-catch Blocks

Exceptions are very important to BLOAT. At this level a try-catch block is
modeled by bloat.editor.TryCatch. It consists of three Labels that label
the first instruction in the try block, the last instruction in the try block,
and the first instruction in the exception handler. It also contains the Type
of the exception that is thrown. All of this information is gleaned through
a bloat.reflect.Catch object (see section 1.1.3).

3.3.2 Editing a Method

A method is edited using a bloat.editor.MethodEditor that is constructed
from a ClassEditor and a MethodInfo. A MethodEditor knows all sorts
of stuff about a method such as its name, type (descriptor), its code (rep-
resented as Labels and Instructions), parameters (represented as Local-
Variables), its try-catch blocks, line number information, as well as the
maximum height of its stack, the maximum number of local variables it has,
and the last label in its code.
A MethodEditor obtains its code as an array of bytes from its MethodInfo.

If the PRESERVE DEBUG flag is set, a MethodEditor will preserve debugging
information by creating LocalVariables with name and type information
and will maintain a mapping between Labels and line number information.

'Dr. Palsberg loves visitors.

3.4. SUMMARY 31

The MethodEditor uses a private helper method called munchCode to
work with the raw bytecodes. munchCode examines an opcode and extracts
information about the opcode that is needed for creating an Instruction
object. The targets of branch instructions are determined. The targets and
lookup tables are compiled for switch instructions.

The MethodInfo is consulted and Labels are created for beginning and
ending instructions for try blocks, as well as the beginning instruction of
the exception handler. An instance of TryCatch is created to hold this
information.

Finally, Instructions are created and added along with their Labels to
a linked list. A Label is also added to the end of the list to signify the start
of the next basic block of code.

3.4 Summary

Classes in the bloat.editor package further refine the representation of a
Java class. The Editor class serves as a central repository for objects which
can edit classes, fields, and methods. These objects offer access to type and
modifier information. Individual instructions (bytecodes) in Java methods
are identified and constructs representing labels (targets of branches) and
try-catch block information are maintained.

32

CHAPTER 3. EDITING JAVA CLASSFILES

Chapter 4

Expression Trees

In BLOAT each basic block has an expression tree associated with it. An
expression tree represents the nested nature of code. For example, 3 + 4 *
5 is represented as:

®/®\
@/@ 5

4.1 A Node In an Expression Tree

DeadCodeEliminationDEAD DeadCodeEliminationLIVE

BLOAT represents a node in the expression tree with class bloat.tree.
Node. Each Node has a parent Node, a value number that is used when
eliminating redundant expressions, and an integer key that is used by some
analyses to indicate whether a node is LIVE, DEAD, etc. Node provides various
methods to access these values.

All nodes in the expression tree are subclasses of Node. There are two
kinds of expression tree nodes: expressions and statements. Expression have
a value, statements do not.

There are also methods of Node that “clean up” a node. Basically, when
a Node is cleaned up, it and all of its children are removed from the tree by
setting its parent node to null and then recursively cleaning its children.

A Node may also be replaced by another Node. Expressions cannot be
replaced by Statements and vice versa. An expression may only be replaced

33

34 CHAPTER 4. EXPRESSION TREES

by an expression with the same type descriptor. A ReplaceVisitor (see
section 4.2) is used to do the actual replacing.

4.2 Visiting the Nodes In an Expression Tree

The visitor pattern allows operations to be performed on objects, but does
not require the objects to be aware of the specifics of the operation. Visi-
tors work especially well with a data structure like a tree whose nodes are
heterogeneous and well-defined.

The abstract class bloat.tree.TreeVisitor provides an interface for
visiting an expression tree. It has a visitz method for each kind (sub-
class) of node, bloat.cfg.Block, and bloat.cfg.FlowGraph. Most of these
methods provide a default implementation that delegates the work to other
methods. For example visitConstantExpr calls visitExpr, etc.

There are two concrete subclasses of TreeVisitor. The first is bloat.
tree.ReplaceVisitor. A ReplaceVisitor traverses an expression tree
and replaces all occurrences of one expression with another. The second is
bloat.tree.PrintVisitor. A PrintVisitor writes a textual representa-
tion of an expression tree to a java.io.PrintWriter. A detailed description
of PrintVisitor is deferred until section 5.6.14.

4.3 Simulating the Operand Stack

The Java virtual machine is a stack machine. Many of the JVM’s instruc-
tions operate on and obtain their operands from a stack. In order to un-
derstand the meaning of JVM instructions, the stack behavior must be sim-
ulated. The class bloat.tree.0OperandStack simulates the behavior of of
JVM’s operand stack. It contains an java.util.ArrayList of expressions
(Expr, see section 4.5) that is the stack.

An Expr is pushed onto the stack and the height is adjusted accordingly
(see Type.stackHeight (), section 3.2.1). Expressions can be popped off
the stack in several different ways. The popped expression can be compared
against an expected expression Type. If the popped expression type does not
match the expected type, an exception is thrown. There is also support for
popping wide and (explicitly) non-wide expressions off the stack. Addition-
ally, there are methods for peeking into the stack, replacing an expression
at a given depth in the stack, and obtaining the height and the size' of the

!Because of wide expressions, the height and the size (the number of expressions in the
stack) of the stack may not be the same.

4.4. NODE TYPES 35

stack. All of these operations are used when simulating JVM instruction
execution when building an expression tree (see section 4.8).

4.4 Node Types

There are many different kinds of Nodes that may populate an expression
tree. These nodes are represented by subclasses of Node. The bloat.tree.
Tree class is a subclass of Node that represents an expression tree. A Tree
instance is constructed from the code in a basic block (an instance of bloat.
cfg.Block, see section 5.2) and an OperandStack representing the state of
the JVM’s stack when the block begins execution. A Tree consists of a list
of statements (Stmt, see section 4.6) and an OperandStack whose initial
value is a copy of the preceding OperandStack.

Statements can be added and removed from a Tree in several different
ways (e.g. add a statement before another statement, remove the last non-
LabelStmt statement, etc.). Instructions may also be added to the tree
(basic block). Adding instructions is covered in detail in section 4.8.1.

When dealing with the dup instructions (see section 4.8.2) it is necessary
to “save” the contents of the stack. This is done in the saveStack method.
If the USE_STACK flag is set, then the expressions on the stack are saved to
a “stack variable” (see StackExpr, section 4.5.5). Else, a new local variable
(see LocalExpr, section 4.5.5) is created and the stack element is stored into
it using a StoreExpr (see section 4.5.1). saveStack is also called when new
statements or instructions are added to the tree (see section 4.8.1).

The Tree class is used to construct expression trees. To accomplish,
Tree implements the bloat.editor.InstructionVisitor interface. The
details of how the expression tree is built will be covered in section 4.8.

4.5 Expressions

An expression is a node in the expression tree that has a value associated
with it. Expressions are modeled with the abstract bloat.tree.Expr class.
Each Expr has a bloat.editor.Type associated with it that represent the
type of the expression.

In addition to having methods that return the Type and defining expres-
sion of the expression, Expr has methods that determine whether or not it
defines a variable (by default, an expression is not), return the statement
(Stmt, see section 4.6) in which the expression resides (by examining its
parent nodes), clone an Expr object, and compare two Exprs.

36 CHAPTER 4. EXPRESSION TREES

4.5.1 Basic Expressions

bloat.tree.ArithExpr represents a binary arithmetic operation. It con-
sists of left and right Expr operands, and an operator represented by a
char constant. Legal operators are ADD, SUB, DIV, MUL, REM, AND, IOR,
XOR, CMP, CMPL, and CMPG.

bloat.tree.ArrayLengthExpr represents the arraylength instruction that
gets the length of an array. It has one operand, a reference to an array
(represented as a Expr).

bloat.tree.CastExpr represents casting an object to a type. It consists
of an Expr representing the object to be cast, and a Type to which
the object is to be cast. Note that this type is also the type of the
expression.

CatchTHROWABLE

bloat.tree.CatchExpr represents catching an exception. It has an in-
stance of Type that represents the type of the exception that is thrown.
A CatchExpr’s expression type is Catch.THROWABLE.

bloat.tree.ConstantExpr represents a constant value such as an integer,
double, or string. It consists of an Object representing the constant
value.

bloat.tree.NegExpr represents the arithmetic negation of an expression.
It has an instance of Expr that represents the expression that is being
negated.

bloat.tree.NewArrayExpr represents the newarray instruction. It consists
of an Expr representing the size of the array being created and the
Type of the array.

bloat.tree.NewExpr represents the new instruction. It knows the Type of
the object to create.

bloat.tree.NewMultiArrayExpr represents the multianewarry instruction
for creating a new multidimensional array. It has an array of Expr
representing the dimensions of the array and the Type of the elements
in the array.

TypeADDRESS

4.5. EXPRESSIONS 37

bloat.tree.ReturnAddressExpr represents a return address and has type
Type . ADDRESS.

bloat.tree.ShiftExpr represents a bit shift operation. It consists of an in-
teger constant representing the direction to shift (LEFT, RIGHT, UNSIGNED_RIGHT),
an Expr representing the expression to shift, and an Expr representing
the number of bits by which to shift.

bloat.tree.StoreExpr represents a store of an expression into a memory
location. It consists of a MemExpr (see section 4.5.5) into which a
Expr is to be stored. StoreExpr implements the Assign interface (see
section 4.7) because it involves an assignment.

4.5.2 Expressions For Calling Methods

The abstract class bloat.tree.CallExpr represents invoking a method. As
one might expect, it consists of an array of Expr representing the parameters
to the method and an bloat.editor.MemberRef (see section 3.2.1) object
representing the method.

CallMethodExprVIRTUAL CallMethodExprNONVIRTUAL CallMeth-
odExprINTERFACE

Calls to an instance method are modeled with bloat.tree.CallMeth-
odExpr. CallMethodExpr augments CallExpr with an integer representing
what “kind” of method is being called (VIRTUAL, NONVIRTUAL, or INTERFACE)
and an Expr representing the receiver object on which the method is invoked.

Calls to class methods (the invokestatic instruction) are modeled with
bloat.tree.CallStaticExpr. CallStaticExpr is simple: it just contains
an array of parameters (Expr) and a MethodRef.

4.5.3 Expressions That Check Things

Several Java instructions result in things that need to be checked. The ab-
stract class bloat.tree.CheckExpr models such instructions. A CheckExpr
contains an express (Expr) that is checked. There are three subclasses of
CheckExpr.

UCExprPOINTER UCExprSCALAR

Class bloat.tree.RCExpr represents the residency check opcode (rc)
that is present in the PJama virtual machine. It just has an Expr to check. A
bloat.tree.UCExpr represents the update check opcode (uc) that is present
in the PJama virtual machine. In addition to an Expr to check, UCExpr also
has an integer kind (either POINTER or SCALAR).

38 CHAPTER 4. EXPRESSION TREES

For some instructions, such as divides, it is important to know when an
operand is zero. This concept is modeled by the bloat . tree.ZeroCheckExpr
class. It consists of an Expr to be checked.

4.5.4 Boolean Expressions

Class bloat .tree.CondExpr is an abstract class representing a conditional
(i.e. yields a true or false value) expression. It is subclassed by bloat.tree.
InstanceOfExpr. InstanceOfExpr represents the instanceof instruction and
has an Expr to check against a certain Type.

4.5.5 Expressions That Define Local Variables

For some of the optimizations that BLOAT performs, it is important to
know when local variables are defined. Expressions that define (i.e. as-
sign to) variables are modeled with bloat.tree.DefExpr. DefExpr has a
java.util.Collection of places in which the variable that is being defined
is used. Each DefExpr also has a unique version number associated with it.
This is the “SSA” number (see chapter 6) of the variable being defined.

DefExpr has an abstract subclass bloat.tree.MemExpr that represents
instructions that access a memory location.

Referencing the Heap

Abstract class bloat.tree.MemRefExpr, a subclass of MemExpr, represents
a group of expressions that reference a memory location (i.e. in the heap).
It is subclassed by three concrete classes.

Class bloat.tree.ArrayRefExpr, a subclass of MemRefExpr, represents
an expression that references an element in an array. It consists of expres-
sions (Expr) representing an index into the array and the array itself, as well
as the Type of elements in the array.

An expression that accesses a field of an object is modeled by the bloat.
tree.FieldExpr, a subclass of MemRefExpr. It consists of an Expr repre-
senting the object being accessed and a MemberRef (see section 3.2.1) rep-
resenting the field being accessed.

Accesses to a class’s static fields are represented by bloat.tree.Sta-
ticFieldExpr, a subclass of MemRefExpr. A MemRefExpr consists of a
MemberRef representing the static field that is accessed.

4.6. STATEMENTS 39

Referencing a Local Variable

Class bloat.tree.VarExpr is an abstract subclass of DefExpr that repre-
sents an expression that accesses local (or stack) variables. Each VarExpr
has an integer index associated with it. VarExpr has two subclasses.
TypeADDRESS
VarExpr is subclassed by bloat.tree.LocalExpr to represent an ex-
pression that accesses (uses or defines) one of a method’s local variables. It
contains a boolean that determines whether or not the local variable was
allocated on the stack. Note that LocalExpr implements LeafExpr (see
section 4.7) and consequentially has no children nodes. LocalExpr has one
interesting method, isReturnAddress, that determine whether or not the
local variable being accessed contains a return address (Type . ADDRESS).
Class bloat.tree.StackExpr represents an expression that is stored on
the JVM stack. Its index is the stack item that is being referenced. Index
0 corresponds to the bottom of the stack. Recall that some data types
occupy more than one stack slot. So, a StackExpr with an index of 3 is not
necessarily in the third stack slot from the bottom. This is important to
keep in mind when working with the dup and instructions for persistence.
In order for a Java class to verify, the height of the operand stack must be
the same and contain the same types for all paths to a given point in the pro-
gram. Therefore no statement containing a stack variable (i.e. StackExpr)
may be inserted, removed, or relocated in the program. This property hin-
ders some optimizations, but is necessary.

4.6 Statements

Statements are nodes in expression trees that have no value associated with
them. They just perform some action the result of which is not important.
Statements are modeled with the abstract class bloat.tree.Stmt. A Stmt
is essentially the same as a Node. Stmt has a number of concrete subclasses.

bloat.tree.AddressStoreStmt represents store a bloat.cfg.Subroutine’s
(see section 5.3) address to a local variable using the astore opcode.
Consequently, an AddressStoreStmt instance consists of a Subroutine
representing the subroutine whose address is being stored. Because an
address cannot be “reloaded”, it has no value and therefore must be
differentiated from LocalExpr (see section 4.5.5), a store to a variable
that has a value.

40 CHAPTER 4. EXPRESSION TREES

bloat.tree.ExprStmt represents an expression whose value is not used (i.e.
the expression is not nested). It consists of an Expr.

bloat.tree.InitStmt represents the initialization of some number of local
variables (usually a method’s parameters). It consists of an array of
LocalExpr. Since values are assigned to, InitStmt implements the
Assign interface and consequently has a defs() method that returns
the array of LocalExpr.

bloat.tree.LabelStmt is a placeholder for a label (target of a jump) in an
expression tree. It consists of a Label.

bloat.tree.MonitorStmt represents the monitorenter and monitorexit op-
codes. A MonitorStmt has a kind (ENTER or EXIT) and an Expr rep-
resenting the the Object whose monitor is being entered or exited.

bloat.tree.SCStmt represents a swizzle check (aswizzle opcode in the PJama
virtual machine) on an element in an array. It consists of two Exprs
representing the index of the element in the array to be swizzled and
the array itself.

bloat.tree.SRStmt represents a range swizzle (aswizzleRange opcode in
the PJama virtual machine) over a range of elements in an array. It
consists of three Exprs: one for the lower value of the range, one for
the upper value of the range, and one for the array itself.

bloat.tree.StackManipStmt represents opcodes that change the ordering
of elements on the stack (e.g. dup and swap). It consists of an two
arrays of StackExpr (section 4.5.5). One array represents the stack
before the instruction is executed. The other, after the instruction
is executed. It also has an integer type that determines what in-
struction (SWAP, DUP, DUP X1, DUP_X2, DUP2, DUP2 X1, or DUP2_X2) the
StackManipStmt represents. Because it defines values on the stack,
StackManipStmt implements the Assign interface. Consequently, it
has a method, defs, that returns the array of StackExpr representing
the stack after the instruction has been executed.

4.6.1 Statements That Change Control Flow

The Java virtual machine has a handful of instructions that change a pro-
gram’s control flow. These instructions are modeled with classes that sub-
class the abstract bloat.tree.JumpStmt class. JumpStmt has a method,

4.6. STATEMENTS 41

catchTargets(), that returns a java.util.Collection of Blocks that be-
gin exception handlers (the “catch targets”) of any exceptions that can be
thrown in the basic block that is terminated by the JumpStmt. JumpStmt
has several subclasses.

bloat.tree.GotoStmt represents a jump to another basic block. It has a
Block that represents the target of the jump.

bloat.tree.JsrStmt represents the jsr opcode. jsr jumps to a subroutine.
Subroutines are used to implement the finally clause of a try-catch
block. A JsrStmt counsists of the bloat.cfg.Subroutine that is called
and the Block of code that follows the jump.

bloat.tree.RetStmt represents the ret opcode that returns from a subrou-
tine. It consists of the Subroutine from which control is returning.

bloat.tree.ReturnExprStmt models the areturn opcode which returns an
Object from a method. ReturnExprStmt has an Expr that represents
the Object being returned.

bloat.tree.ReturnStmt represents the return opcode which simplify re-
turns from a method. It has no special data.

bloat.tree.SwitchStmt represents one of the switch instructions of the
Java virtual machine. A SwitchStmt consists of an integer, index,
(represented by an Expr) on which the switch is to be performed.
An array of integers represents the interesting values of index. An
array of Block, targets, represents the blocks corresponding to the
interesting values. Finally, a default Block is provided, if the index is
not interesting.

bloat.tree.ThrowStmt represents the athrow opcode which throws an ex-
ception. An instance of ThrowStmt consists of an Expr representing
the exception object that is thrown.

If Statements

“If” statements are represented by the abstract bloat.tree.IfStmt class,
a subclass of Stmt. Each IfStmt consists of two Blocks representing the
true and false targets, and an integer that specifies the kind of comparison
operation (EQ, NE, GT, GE, LT, or LE) represented by the statement. In
addition to having methods that access the true and false blocks, IfStmt
has a method, negate, that negates it meaning.

42 CHAPTER 4. EXPRESSION TREES

The comparison of two expressions is represented by bloat.tree.If-
CmpStmt, a concrete subclass of IfStmt. In addition to an operator kind, a
true Block and a false Block, an IfCmpStmt has a left and right Expr whose
values are compared.

When an expression’s value is compared against zero, an instance of
bloat.tree.IfZeroStmt is used. An instance of IfZeroStmt consists of a
comparison constant, a true Block, a false Block, and an expression (Expr)
whose value is compared with zero.

4.6.2 ¢-Statements

When a control flow graph is transformed into static single assignment
(SSA) form, special nodes called ¢-statements are placed into the graph.
¢-statements are placed at merge points in the program and represent a
merge of certain variable information. ¢-statements combine information
from various paths in the control flow graph into a new piece of informa-
tion.

BLOAT represents ¢-statements with the abstract bloat.tree.PhiStmt
class. Each PhiStmt has a VarExpr (see section 4.5.5) that represents the
target of the ¢-statement. Since a ¢-statement assigns a value its target,
it implements the Assign interface. PhiStmt’s defs() method returns its
target VarExp.

There are two concrete subclasses of PhiStmt. bloat.tree.PhiJoinStmt
represents a ¢-statement inserted into a basic block to merge some number
of variables. PhiJoinStmt has a VarExpr target, a Block in which it resides,
and a Map of operands (which themselves are Exprs, usually VarExprs) to
the Blocks in which they are assigned. Don’t worry, this will all be explained
later. It has methods to access the PhiJoinStmt’s operands.

Exception handling complicates the work of a ¢-statement. The class
bloat.tree.PhiCatchStmt is used to represent merging variables inside a
catch block. In addition to a LocalExpr target, PhiCatchStmt has a list
of operands (LocalExpr). PhiCatchStmt has methods that work with its
operands.

4.7 Interfaces Used In the Expression Tree

Classes that implement the bloat.tree.Assign interface perform an assign-
ment. An assignment implies that a definition of a variable occurs. Knowing
where variables are defined is important for some of the optimizations that

4.8. CONSTRUCTING THE EXPRESSION TREE 43

BLOAT performs. The Assign interface has one method, defs(), which
returns an array of DefExprs (see section 4.5.5).

Assign is implemented by InitStmt (defines local variables), PhiStmt
(defines a ¢-variable), StackManipStmt (defines a slot on the stack), and
StoreExpr (defines a memory location).

The only place Assign is used is in the isDef () method of DefExpr. A
test is made to determine if a DefExpr is nested inside a node that imple-
ments Assign.

The bloat.tree.LeafExpr interface has no methods. It simply de-
notes a class that does not have any children nodes. It is implemented
by ConstantExpr and LocalExpr.

4.8 Constructing the Expression Tree

The class bloat.cfg.FlowGraph has a private method, buildTreeFor-
Block, that begins the process of building and expression tree for a ba-
sic block of code. After creating a new Tree, it iterates over the code
in the method (bloat.editor.Instructions and bloat.editor.Labels).
buildTreeForBlock then figures out things like which Block follows a jump
instruction, or which Subroutine a ret instruction lies in, and then adds the
instructions to the expression tree. The details of buildTreeForBlock are
discussed in section 5.5.4.

4.8.1 Adding Instructions to the Tree

Tree has three public methods (all named addInstruction) that are used
for adding instructions to an expression tree. One method is used for jsr and
jump instructions and includes a Block parameter that specifies the Block
that follows the jump. Another method is for the ret and astore instructions.
This method has a Subroutine parameter that specifies a Subroutine in
which the instruction may reside. All ret instructions reside in subroutines.
An astore may store a subroutine’s return address into a local variable.
The third addInstruction method is for all other instructions. All three
methods call the private addInst to do the bulk of the work of adding an
instruction to the expression tree.

The one-parameter addInst method attempts to do some optimization
of dup instructions®. Then it calls the two-parameter addInst that may
save all of the expressions on the operand stack to stack variables or local

2I’m not too sure about this one, folks.

44 CHAPTER 4. EXPRESSION TREES

variables (saveStack). If that succeeds, the instruction is visited by the
InstructionVisitor, the Tree that creates the nodes in the expression
tree for the instruction.

4.8.2 Visiting Instructions and Building the Tree

Recall that Tree implements the InstructionVisitor interface. We will
now focus on the details of the InstructionVisitor and how it builds the
tree. Each visit_opcode method creates one or more expression tree nodes
and in the process pushes and pops information off of the Tree’s operand
stack (OperandStack, see section 4.3). Recall that each visit_opcode oper-
ates on an object of Instruction (see section 3.3.1).

Loading Data

Pushing Constants Instructions that push a constant from the constant
pool (Idc and Idc_w) result in the creation of an instance of ConstantExpr
whose value is the operand of the instruction and whose type is the
type of the value. The ConstantExpr is pushed onto the operand
stack.

Loading From a Local Variable Instructions that load data from a local
variable (iload, lload, fload, dload, and aload) result in the creation of
an instance of LocalExpr whose index is the index of the local variable
from which the data is loaded. The type of the LocalExpr depends
on the instruction. The LocalExpr is pushed onto the operand stack.

Loading From an Array Instructions that push an element of an array
onto the stack (iaload, laload, faload, daload, aaload, baload, caload,
and saload) result in the creation of an ArrayRefExpr. The array and
index of the ArrayRefExpr are popped off the operand stack. The
ArrayRefExpr is pushed onto the operand stack.

Storing Data

When storing data a StoreExpr is generated from a MemExpr. Sometimes we
want the StoreExpr to be pushed onto the operand stack and sometimes we
want it to be wrapped in an ExprStmt and treated as a statement and added
to the Tree’s statement list. This decision is made in the private addStore
method. If the opcode preceding a store is one of the dup instructions, the
generated StoreExpr is pushed onto the operand stack. In all other cases
the StoreExpr is represented as a statement.

4.8. CONSTRUCTING THE EXPRESSION TREE 45

Storing Basic Types Into Local Variables Instructions that store ba-
sic types into local variables (istore, Istore, fstore, and dstore) create a
new instance of LocalExpr. The LocalExpr’s index is gleaned from
the operand to the instruction and its type is obtained by popping the
operand stack. addStore is called.

Storing a Reference Into Local Variables The astore instruction stores
an object reference to a local variable. If the reference is an Object,
it is handled in the same manner as the basic types: A LocalExpr is
created with the operand of the instruction and with the type of the
object on the top of the operand stack. Then addStore is called.

However, the reference may also be a return address. This will occur
when the Tree represents a block in a subroutine. An instance of
AddressStoreStmt is created with the Subroutine in which the block
resides and is added to the statement list.

Storing Into Arrays Instructions that store into arrays (iastore, lastore,
fastore, dastore, aastore, bastore, castore, and sastore) result in the cre-
ation of an ArrayRefExpr. The ArrayRefExpr’s array (Expr), index,
and new value are popped from the operand stack. addStore is called.

Working With the JVM’s Stack

Instructions that pop elements off of the JVM’s stack (pop and pop2) cause
Exprs to be popped off the operand stack and instances of ExprStmt to be
created from the Exprs. The ExprStmt is added to the statement list.

TreeUSE_STACK

The Java virtual machine has several instructions for duplicating ele-
ments on the operand stack. These are the dup instructions. BLOAT can
deal with the dup instructions in one of two ways. It can model the dup
behavior with StackExprs and StackManipStmts (section 4.5.5 and section
4.6), or it can just forget about messing with the stack and used local vari-
ables. The USE_STACK flag determines which method is used.

If the USE_STACK flag is set, then a StackManipStmt is created to repre-
sent the changes that the dup instruction makes to the stack. Let’s consider
what happens when a dup_x1 instruction is encountered. The top element of
the stack is duplicated and is placed two words below the top of the stack.
The dup_x1 instruction can be represented as:

01->101

46 CHAPTER 4. EXPRESSION TREES

Opcode | Transformation Description
dup 0->00 Duplicate top element of stack
dupxl (01 ->101 Duplicate top element of stack and put
two down
dupx2 |01 2->2012 Duplicate top element of stack and put
three down
0-12->20-12
dup?2 01->0101 Duplicate top two elements of stack
0-1 -> 0-1 0-1
dup2x1 |01 2 ->12012 Duplicate top two elements of stack
and put three down
01-2 -> 1-2 0 1-2
dup2x2 {0123 ->2 301 2 3| Duplicate top two stack elements and
put four down
012-3->2-301 2-3
0-123->230-123
0-1 2-3 -> 2-3 0-1 2-3
swap 01->10 Swap the top two elements of the stack

Table 4.1: The Java Virtual Machines dup Instructions

The top two elements, s1 and s0, are popped off the operand stack and
placed into an array. Both s1 and sO should be instances of StackExpr. An
integer array is used to represent the transformation between the old stack
(before the dup_x1 instruction) and the new stack. For instance, the integer
array for dupxl is {1, 0, 1}. Using these two arrays, the private manip
method, adjusts the elements of the Tree’s operand stack to reflect the
execution of the instruction and adds a StackManipStmt to the statement
list that represents the transformation. As Table 4.1 shows, care must be
taken when dealing with wide data on the stack.

If the USE_STACK flag is not set, a StackManipStmt is not used. Instead,
a local variable (LocalExpr) is used to represent the element of the stack.
This causes more local variables to be used, but reduces the complexity of
the expression tree.

For instance, when the dup_x1 instruction is encountered the top two
elements of the stack, s1 and sO are popped. Two new local variables
(LocalExprs), t0 and t1, are created to represent s1 and s0. Unless s1 and
s0 happen to be equal to t0 and t13, their values are stored using method

3This means that the top two elements of the stack were LocalExprs representing si

4.8. CONSTRUCTING THE EXPRESSION TREE 47

addStore (see section 4.8.2). Finally, clones of t0 and t1 are pushed onto
the stack in the appropriate order. For dupxl a clone of t1 is pushed,
followed by a clone of t0 and a clone of t1. Again, things are complicated
by wide stack elements.

Arithmetic Operations

Addition, Subtraction, and Multiplication Opcodes for handling ad-
dition, subtraction, and multiplication (zadd, zsub, zmul) are handled
similarly. The left and right operand expressions (Expr) are popped off
the stack and an ArithExpr (see section 4.5.1) is created to represent
the operation.

Division and Remainder The handling of the division and remainder op-
codes (zdiv and zrem) involves popping the left and right operand ex-
pressions off the stack. Unless a float or double division operation
(fdiv or ddiv) is being handled, a ZeroCheckExpr (see section section
4.5.3) is created for the right operand expression. The ZeroCheckExpr
is used as the right operand for the ArithExpr which is then pushed
onto the stack.

Negation The negation instructions (zneg) are represented by NegExprs.
The operand of the NegExpr is popped from the stack.

Bit Shifting The bit shift instructions (ishl, Ishl, ishr, Ishr, iushr, and lushr)
are represented by a ShiftExpr (see section 4.5.1) whose operands are
popped off the stack.

Boolean Operations The boolean operation instructions (iand, land, ior,
lor, ixor, and Ixor) are modeled by ArithExprs whose operands are
popped from the stack.

Incrementing The iinc has no corresponding Expr class. Recall that the
iinc instruction has two operands, a local variable to increment and
the amount by which to increment the local variable. Also recall that
this information was encapsulated in the bloat.editor.IncOperand
class (see section 3.3.1).

A LocalExpr is created from the IncOperand’s local variable and a
ConstantExpr is used to represent the amount by which to increment
the local variable. An ArithExpr is created to perform the increment

and sO.

48 CHAPTER 4. EXPRESSION TREES

(or decrement, if the amount is negative). A StoreExpr is created to
store the result of the ArithExpr into the LocalExpr. Finally, the
StoreExpr is wrapped in an ExprStmt and is added to the statement
list.

Comparing floats and doubles The fcmpl, fcmpg, dcmpl, and dcmpg in-
structions compare two floats (or doubles). If the left operand is
greater than the right operand, an integer 1 is pushed on the stack. If
the left operand is equal to the right operand, an integer 0 is pushed
on the stack. If the left operand is less than the right operand, an
integer -1 is pushed on the stack. The zcmpl instructions differ from
the zcmpg instructions in the manner in which they handle NaN (not
a number). The left and right operands are popped off the stack and
an ArithExpr is constructed.

Changing Control Flow

Comparing With Zero The “if” instructions (ifzz, ifnull, and ifnonnull)
compare a value with zero. The expression to test is popped off the
stack. The true block is obtained from the Tree’s control flow graph
and the if instruction’s operand. The false block is the block following
the block for which the Tree is constructed. From this information an
IfZeroStmt (see section 4.6.1) is created an pushed onto the operand
stack.

Comparing Two Expressions The “compare” instructions (if_zcmpop)
compare two expressions and branch depending on the expressions’s
equality. The two expression are popped from the operand stack.
The true block is obtained from the Tree’s control flow graph using
the operand of the compare instruction. The false block is the block
following the block that is modeled by the Tree. All of this information
is used to create an IfCmpStmt which is added to the statement list.

Unconditional Jump The unconditional jump instruction, goto, is mod-
eled with a GotoStmt. The destination block is obtained from the
Tree’s control flow graph and the operand to the instruction. A
GotoStmt is created with the destination block and added to the state-
ment list.

Jump to a Subroutine The jsr instruction jumps to a JVM subroutine.
The operand to a jsr is the “address” of the first instruction of the

4.8.

CONSTRUCTING THE EXPRESSION TREE 49

subroutine. The address of the instruction following the jsr is pushed
onto the stack. When a jsr instruction is encountered, the bloat.
cfg.Subroutine (see section 5.3) that is the target of the jump is
obtained from the instruction’s operand and the Tree’s control flow
graph. A JsrStmt (see section 4.6.1) is created from the Subroutine
and the block following the jsr instruction*. The JsrStmt is added to
the statement list. Finally a ReturnAddressExpr (see section 4.5.1) is
pushed onto the stack.

Return From a Subroutine The ret instruction returns from a subrou-

tine. ret instructions are only encountered inside of subroutines. A
RetStmt is created from the bloat.cfg.Subroutine in which the in-
struction resides. The RetStmt is added to the statement list.

Switch Instruction The tableswitch instruction jumps to a instruction as-

sociated with a index into a jump table. The lookupswitch looks up a
key in a jump table and branches to the instruction associated with
the key. Together these instructions are modeled with a SwitchStmt.

The index (or key) is popped from the operand stack. The operand
to the instruction is an instance of bloat.editor.Switch (see section
3.3.1). The targets, as well as the default target, of the switch are
obtained from the Switch and the Tree’s control flow graph. This in-
formation along with the integer values of the keys is used to construct
a SwitchStmt that is added to the statement list.

Returning an Expression The zreturn instructions represent returning a

value from a method. The value is popped off the operand stack (as
an Expr) and is used to create a ReturnExprStmt which is added to
the statement list.

Accessing Parts of a Class

Fetching a Field The getfield instruction fetches a field from an object.

The operand to a getfield is an instance of bloat.editor.MemberRef.
The object whose field is being fetched is popped off the stack. A
ZeroCheckExpr (see section 4.5.3) is created to ensure that the object
is non-null. The ZeroCheckExpr and the MemberRef are used to create
a new FieldExpr (see section 4.5.5) which is then pushed onto the
stack.

4Remember that any jump terminates a basic block. Therefore the instruction following
the jsr is always in another Block.

50 CHAPTER 4. EXPRESSION TREES

Setting a Field The putfield instruction sets the value of an object’s field.
The field itself is represented as a bloat.editor.MemberRef that is
the operand to the instruction. The object whose field will be set
and the value to which it will be set (both Exprs) are popped off the
operand stack. A ZeroCheckExpr is created to ensure that the object
is non-null. Using this information a FieldExpr is created to reference
the field. Finally, the value is stored into the field (FieldExpr) with
method addStore (see section 4.8.2).

TypeVOID

Invoking Methods The invokevirtual, invokespecial, invokestatic, and in-
vokeinterface instructions invoke a method. The private addCall method
is used to create the appropriate instance of CallMethodExpr or Call-
StaticExpr to represent the call. The operand to the invoke instruc-
tion is a MemberRef. From the MemberRef the types of the parameters
and the return type of the method are obtained. The types of the pa-
rameters are used to ensure that the parameters are valid as they are
popped off of the operand stack. If the instruction is invokestatic, then
an instance of CallStaticExpr is created to represent the method
call. Else, an instance of CallMethodExpr is created. If the method’s
return type is not Type.VOID, then the CallzzzzzxExpr is pushed
onto the stack. Else, it is wrapped in a ExprStmt and is added to the
statement list.

Instantiating Objects

Creating a New Instance The new instruction creates a new object. The
operand of the new instruction is a bloat.editor.Type (see section
3.2.1) that represents the class of the object to be created. A NewExpr
is created with the type of the new object.

Creating a New Array The newarray and anewarray are used to create
new arrays of basic types and objects, respectively. The type of the
elements in is obtained from the MemberRef operand of the instruc-
tion. The size of the array is popped off the top of the stack. This
information is used to create a NewArrayExpr that is pushed onto the
operand stack.

Creating a Multidimensional Array The multianewarray instruction is
used to create a new multidimensional array. Information about the
array to be created is obtained from the operand of the instruction, a

4.8. CONSTRUCTING THE EXPRESSION TREE 51

bloat.editor.MultiArrayOperand. Recall that a MultiArrayOperand
contains the number of dimensions in the array and the Type of the
elements in the array. The lengths of the array in each dimension are
popped off of the operand stack. This information is used to create a
MultiArrayExpr that is pushed on the operand stack.

Persistent Store Instructions

Updating Data In a Persistent Store The aupdate and supdate are used
to update, respectfully, pointer and scalar values in a persistent store.
A UCEzxpr is used to represent these checks. UCExpr is a little different
from other expressions in that does not change the operand stack. The
object on which the update check is being performed is obtained by
“peeking” into the stack at a certain depth. The operand to the up-
date instruction is the depth of the stack at which the object (Expr)
resides. A UCExpr is created and replaces the object’s Expr in the
stack.

Swizzling an Element of an Array The aswizzle instruction is used to
swizzle an element of an array. The array and the index into the array
are popped from the operand stack. This information is used to create
a SCStmt that is added to the statement list.

Swizzling a Range of Array Elements The aswizzleRange instruction is
used to swizzle a range of elements in an array. The starting and end-
ing indices of the range, as well as the array itself are popped off the
stack. A SRStmt is created and is added to the statement list.

Other Instructions

Obtaining the Length of an Array The arraylength instruction gets the
length of an array. The reference to an array (Expr) is popped off the
stack and is used to make an ArrayLengthExpr which is popped onto
the stack.

Throwing an Exception The athrow instruction throws an exception. The
exception object to throw (Expr) is popped off the operand stack. It
is used to create a ThrowStmt that is added to the statement list.

Casting The casting instructions (z2y) are modeled by a CastExpr whose
operand is popped off the stack and whose type is the type to which
the operand is cast.

52 CHAPTER 4. EXPRESSION TREES

Checking Casting The checkcast instruction checks if an object is of a
given type. The object (Expr) is popped off the stack. The type to
check against is obtained from the operand to the instruction. This in-
formation is used to create a CastExpr that is pushed onto the operand
stack.

Determining Type The instanceof instruction determines if an object is of
a given type. The type to check against is obtained from the operand
to the instruction. The object (Expr) is popped off the operand stack.
This information is used to create an Instance0fExpr that is pushed
onto the operand stack.

Entering and Exiting a Monitor The monitorenter and monitorexit are
used to enter and leave an object’s monitor. The object is popped from
the stack and a MonitorStmt is created and added to the statement
list.

4.9 Summary

BLOAT models Java instructions using expression trees. An expression
tree consists of non-valued statements and expression that have a value.
BLOAT expression trees are populated with nodes that represent operations
such as arithmetic, method invocation, stack manipulation, and exception
throwing. Expression trees are constructed by examining each instruction
and simulating the Java Virtual Machine’s operand stack.

Chapter 5

Control Flow Graphs

5.1 Background

A basic block contains a sequence of instructions in which there is no change
of flow control. That is, the first instruction in the block has a label associ-
ated with it (i.e. it is the target of a jump) and the last instruction in the
block is a jump to another block. Basic blocks have the property that the
flow of control can only enter at their first instruction and can only exit at
their last instruction.

A control flow graph is a directed graph in which the nodes of the graph
are basic blocks. In the control flow graph there is a directed edge from a
block x to block y if the target of z’s last instruction is the first instruction
in y. The graph has two additional nodes, the entry block and the exit
block. There is an edge from the entry block to any node from which the
program (in BLOAT’s case, a method) can be entered. Similarly, there is
an edge from every block from which the program can be exited to the exit
block.

A basic block x dominates another block y in a control flow graph,
if all paths from the entry node to y pass through z. A block z strictly
dominates a block y if z and y are not the same block. A block’s immediate
dominator is it closest strict dominator. This dominance relationship results
in a dominator tree'. The root of dominator tree is the entry node (which
has no immediate dominator). The parent of a node in the dominator tree
is its immediate dominator.

Conversely, © postdominates y if all paths from the exit node to z pass
through y in the reverse control flow graph. This leads to a postdomina-

!Note that a tree results because a node can have at most one immediate dominator.

53

o4 CHAPTER 5. CONTROL FLOW GRAPHS

e‘:}e

Node 2 dominates nodes 2, 3, 4, and 5.
Its dominance frontier is nodes 2, 7, 9, and 10.

Figure 5.1: Dominance Frontier

tor tree in which a node has a postdominator parent and postdominator
children.

The dominance frontier of a node z is the set of all nodes w such that z
dominates a predecessor of w, but does not strictly dominate w. Basically,
nodes in the dominance frontier have one parent that is dominated by = and
at least one parent that is not dominated by z. An example of a dominance
frontier is giving in figure 5.1. Similarly, there is a postdominance frontier.

A loop is a strongly connected component of a control flow graph. The
loop header is the block in a loop that dominates all other blocks in the
loop. A loop is reducible if its only entry point is at the loop header.

A trace of a control flow graph is an ordering of its blocks with the fol-
lowing two properties. The first is that blocks that end with a conditional
jump are followed in the trace by the block that is executed when the condi-
tion is false. The second is that blocks ending with an unconditional jump
are followed, where possible, by the block that is the target of the jump.
Bytecode will typically be in trace form.

5.2 Basic Blocks

BLOAT represents basic blocks with bloat.cfg.Block. Since a Block rep-
resents a node in a graph (a control flow graph), it is a subclass of bloat.
util.GraphNode (see section 2.2.1). Each Block knows the Label (see sec-
tion 3.3.1) that begins it the control flow graph (bloat.cfg.FlowGraph, see

5.3. EXCEPTIONS 55

section 5.4) in which it is a node. The instructions in a basic block are rep-
resented by an instance of bloat.tree.Tree (see section 4.4), an expression
tree.

Each Block knows both its parent and children in the dominator tree,
parent and children in the postdominator tree, and its dominance and post-
dominance frontier. The dominator and dominance frontier information is
computed using the DominatorTree and DominanceFrontier classes (see
section 5.6.1 and section 5.6.2).

BlockNON_HEADER BlockREDUCIBLE BlockIRREDUCIBLE

There are three “types” of basic blocks: NON_HEADER, REDUCIBLE, and
TIRREDUCIBLE. A NON_HEADER block is a block that is not the header block
of a loop. A REDUCIBLE block is the header of a loop that can be reduced
and an IRREDUCIBLE block is the header of a loop that cannot be reduced.

Block has a number of methods that grant access to its expression tree,
control flow graph, type, header, and parent and children in various trees.

5.3 Exceptions

Exceptions are a pain. In the classfile, exceptions are represented by the
exception table, a table consisting of a range of instructions over which the
exception may be thrown, the instruction that begins the exception handler,
and the type of the exception caught. At the reflection level, BLOAT models
exceptions with bloat.reflect.Catch (see section 1.1.3). In the editing
level, exceptions are modeled with bloat.editor.TryCatch (see section
3.3.1).

Now, exceptions are modeled with bloat.cfg.Handler and bloat.cfg.
Subroutine classes. Handler consists of a Set of protected Blocks (the
“try” blocks), a catch Block, and the Type of exception that is caught by
the catch block.

Recall that finally blocks are implemented using Java Virtual Machine
subroutines [LY96]. The jsr (“jump to subroutine”) instruction is used to
enter a subroutine. The jsr pushes the address of the instruction following
it onto the JVM stack. This instruction is where control will return once
the subroutine has completed. The first instruction of the subroutine is an
astore that stores the return address into a local variable. The subroutine
then goes about its merry way executing whatever code is in the finally
block. When it is done, the subroutine executes a ret instruction whose
operand is the local variable in which the return address is stored.

BLOAT models a JVM subroutine with the bloat.cfg.Subroutine

56 CHAPTER 5. CONTROL FLOW GRAPHS

class. A Subroutine knows the FlowGraph (i.e. method, see section 5.4)
in which it resides, its (the subroutine’s) entry and exit Blocks, and the
bloat.editor.LocalVariable (see section 3.3.1) in which its return ad-
dress is stored. The local variable is set when an astore instruction in a
subroutine is visited by Tree (an InstructionVisitor see section 4.8.1
and section 4.8.2).

Additionally, each Subroutine has a list of Block pairs that represent
the block in which the subroutine is called (ends in a jsr) and the corre-
sponding block that is executed upon return from the subroutine (begins at
the return address). These Block pairs are referred to as the “paths” and
are constructed by the buildBlocks method of FlowGraph (section 5.5.1).
Subroutine has methods to add and remove paths.

5.4 Modeling Control Flow Graphs

BLOAT models a control flow graph with bloat.cfg.FlowGraph, a class
that extends bloat.util.Graph (see section 2.2.1) and represents a Java
method. Each control flow graph is associated with a method via a bloat.
editor.MethodEditor (see section 3.3.2). The nodes of the control flow
graph, basic blocks, are instances of Block. Each FlowGraph has three
special blocks. The source block is the control flow graph’s entry block.
Control enters the FlowGraph through the source block. The sink block is
the control flow graph’s exit block. Control exits the FlowGraph through
the sink block. The init block contains code that handles the initialization
of method parameters, etc.

In addition to the three special blocks and the method’s MethodEditor,
some other information about the control flow graph is maintained. A list
of all the Blocks in the control flow graph, called the “trace” is maintained.
A Graph called the “loop tree” represents any loops occurring in the control
flow graph and their nesting (see buildLoopTree in section 5.6.7).

A FlowGraph maintains some information pertaining to the method it
models. Most of this information is related to the exceptions that are han-
dled in the method. FlowGraph maintains a mapping between a subroutine’s
entry Block and its Subroutine, a list of all of the Blocks that begin excep-
tion handlers, and mapping between the first Block of an exception handler
and its Handler object (see section 5.3).

5.5. CONSTRUCTING THE CONTROL FLOW GRAPH 57

5.5 Constructing the Control Flow Graph

5.5.1 Building Basic Blocks

The private buildBlocks method of FlowGraph creates basic blocks from
the code of the method that the control flow graph models. It first obtains a
list of the instructions (bloat.editor.Instructions and bloat.editor.
Labels, see section 3.3.1 and section 3.3.1) from the MethodEditor. It
examines every Label and if it starts a basic block, a new Block is created
with that Label and added to the FlowGraph via a call to newBlock. This
new block is added to the FlowGraph’s trace.

The method’s code is again examined from the beginning. Several things
may occur when a Label that starts a basic block is encountered. First, a
mapping between Labels that begin basic blocks and their offset in the code
(Integer) is maintained. If the last Instruction that was encountered was
a jsr, the Subroutine corresponding to the operand of the jsr (a Label) is
obtained. A “path” (see section 5.3) is added to the Subroutine from the
Block that contains the jsr to the Block that starts with the Label being
examined (i.e. the block to which the subroutine will return).

When a jsr Instruction is encountered and the Subroutine target of
the jsr has not yet been encountered, a new Subroutine is created. By
examining the operand of the jsr instruction, the Block that begins the
Subroutine is obtained. A mapping between this Block and its Subroutine
is maintained.

5.5.2 Dealing With Exception Handlers

Before the expression trees for the basic blocks are constructed, the build-
Trees method performs some processing of try-catch blocks. Each of the
MethodEditor’s bloat.editor.TryCatches (see section 3.3.1) is examined.
Two Blocks are created for each TryCatch. The first Block, the “catch
block”, is the target of the exception handler. It saves the exception on the
JVM stack. Recall that the athrow instruction pushes the exception object
back onto the stack. We need to model this behavior. This block is also
created so that the handler target cannot possibly be a loop header.

The second Block, the “catch body”, contains the code that handles the
exception. A mapping from the catch block to the catch body is maintained.
The catch block’s position in the code is the same as the catch body’s. An
edge in the control flow is added from the catch block to the catch body.
The catch block is added to the trace of the control flow graph just before
the catch body.

58 CHAPTER 5. CONTROL FLOW GRAPHS

An expression bloat.tree.Tree is created for the catch block. The
Tree consists of a StoreExpr (see section 4.5.1) that stores a CatchExpr (see
section 4.5.1) into a StackExpr (see section 4.5.5) followed by a GotoStmt
(see section 4.6.1) that jumps to the catch body.

A new Handler (see section 5.3) is created for the Type of the TryCatch.
A mapping between the catch block and its Handler is maintained. Then,
every Block in the control flow graph is examined. If the block’s offset in
the code lies between the start and the end of the TryCatch, then the block
is a protected block and we add it to the Handler’s list of protected blocks.

Edges are added from the control flow graph’s source block to its init
block, its source block to its sink block, and its init block to the first block
of code. Then the private buildSpecialTrees method is called to con-
struct the expression trees for these “special” blocks (i.e. sink, source, and
init). New bloat.tree.Trees are created for the special blocks. If there is
code in the method being modeled by the FlowGraph?, then in initLocals
method of the init block’s Tree is called. Recall that initLocals method
initializes a method’s parameters (represented as local variables) by adding
a bunch of InitStmts to a Tree. The local variables for the method
modeled by the FlowGraph are obtained by calling FlowGraph’s private
methodParams method which constructs an ArrayList of LocalExpr from
the MethodEditor. A goto Instruction that jumps to the first block in
the method (control flow graph) is added to the init block’s expression tree.
Finally, addHandlerEdges is called for the init block.

Adding Edges to Exception Handlers

Recall that if some instruction in a basic block throws an exception, flow
control will be transferred to the exception handler. Thus, there must be
an edge in the control flow graph from the block that may throw an ex-
ception to the first block of the exception handler. FlowGraph’s private
addHandlerEdges method adds these edges. First, it iterates over all of the
Handlers that the FlowGraph knows about. If the block (that many throw
an exception) in question or any of its immediate successors lies inside the
protected region of the Handler, then we need to process it. The “catch
block” (first block in the exception handler) for the Handler is obtained.
This block is added to the list of “catch targets” of the JumpStmt that ter-
minates the block in question. An edge in the FlowGraph is added between

*Note that if there is no code in the method, buildSpecialTrees would have been
called long ago and none of this malarky with the exception handlers would have been
necessary.

5.5. CONSTRUCTING THE CONTROL FLOW GRAPH 59

the block that may throw an exception and the catch block. If the expression
tree for the “catch body” associated with the catch block has not yet been
created, do so® by calling buildTreeForBlock (see section 5.5.4). Finally,
addHandlerEdges is called recursively for the catch block in case there are
exceptions handled within exception handlers.

5.5.3 A Quick Regroup

Okay, what have we done so far? We've added Blocks to the FlowGraph
for every Label in the code that begins a basic block. We’ve created
Subroutines to represent the subroutines in the method being modeled
by the FlowGraph. We've created “catch block” and “catch body” Blocks
and expression trees for each exception handler. We've also dealt with the
sink, source, and init blocks, adding edges and creating expression trees
where necessary. Finally, we’ve added edges from blocks that may throw
exceptions to their exception handlers.

5.5.4 Building Expression Trees

Expression Trees are created by the buildTreeForBlock method. build-
TreeForBlock generates expression trees for a given Block and all Blocks
reachable from that Block that do not already exist. It has already been
used to generate expression trees for the init block and the exception handler
blocks. The last thing the buildTrees method does is invoke buildTree-
ForBlock on the first block in the method with an initial stack corresponding
to the operand stack of the init block.

If an expression tree does not already exist for the Block, buildTree-
ForBlock creates a new Tree for the Block using the current contents of the
operand stack. It then iterates over the Block’s code (Instructions and
Labels) obtained from the MethodEditor. An initial pass is made over the
code. If a jsr or a conditional jump Instruction is encountered, the code
is searched for the target of the jump. This is the “next block”.

Another pass over the code is made. Instructions are handled as follows.

astore The instruction is added to the expression tree using the addIn-

struction method of Tree (see section 4.8.1) making note of the

current Subroutine that we are in®.

3Note that the initial OperandStack of the exception handler contains an object of
Type . THROWABLE representing the exception object that was pushed on the stack by the
athrow instruction.

“Recall that the astore may store the return address of the Subroutine.

60 CHAPTER 5. CONTROL FLOW GRAPHS

ret Make note of the fact that the Block is the exit block for the cur-
rent Subroutine. The instruction is added to the Tree via a call to
addInstruction. Edges in the control flow graph are added from the
exit block of the Subroutine to the block that is executed following
the ret from the Subroutine. These blocks are determined using the
Subroutine’s “paths” (see section 5.3).

throw or return instruction An edge in the control flow graph is added
from the block to the sink block after the instruction is added to the
tree.

jsr The instruction is added to the tree noting the next block. buildTree-
ForBlock is then recursively called to build and expression tree for the
target of the jsr, a Subroutine. An edge in the FlowGraph is added
from the block containing the jsr to the beginning of the Subroutine.
If the Subroutine’s exit block is known, code is generated for the
next block using the operand stack of the Subroutine’s exit block.
An edge from the Subroutine’s exit block to the next block is added
in the FlowGraph.

Conditional Jump The instruction is added to the tree noting the next
block. An edge is added from the block to the target of the jump (the
“true” block). An expression tree is generated for the target block via
a recursive call to buildTreeForBlock. An edge is also added between
the block and the next block (the “false block” because the blocks are
in trace order). An expression tree is also generated for the next block.

Switch The instruction is added to the expression tree. The bloat.editor.
Switch object corresponding to the instruction’s operand is obtained.
Through the Switch the targets of the switch statement are obtained.
An edge is added from the block containing the goto to each target
block. An expression tree is generated for each target block.

When a Label that starts a block is encountered, a new goto instruction
is added to the tree. An edge is added from the block to the block starting
with the Label and an expression tree is generated for the block starting with
the Label. After all of the Instructions and Labels have been processed,
addHandlerEdges (see section 5.5.2) is called to add edges from blocks that
may throw exceptions to the appropriate exception handlers.

Once the Blocks and expression Trees have been built, the removeUn-
reachable method of Graph (see section 2.2.1) is called to remove Blocks

5.6. INITIALIZING THE CONTROL FLOW GRAPH 61

in the FlowGraph that are not reachable from a pre-order traversal. When
blocks are removed from the control flow graph, the Labels that start those
blocks no longer label anything that is valid. The saveLabels method saves
these Labels by adding them as LabelStmts to the init block and marking
them as no longer starting a block.

5.6 Initializing the Control Flow Graph

After the nodes of a control flow graph have been built, the graph must be
initialized. The initialization process involves computing the dominance re-
lationships among the nodes, building the loop tree, splitting reducible and
irreducible loops, peeling loops, removing critical edges, and inserting stores
after conditionals and before protected regions. FlowGraph’s initialize
method performs these tasks and relegates most of the work to other meth-
ods and classes.

5.6.1 Building the Dominator Tree

Recall that a control flow graph’s dominator tree is the tree rooted at the
entry node where the parent of a node is its immediate dominator. The
bloat.cfg.DominatorTree class has one public method, buildTree, that
does the work of constructing the dominator tree for a control flow graph.
The Purdum-Moore [PM72] algorithm is used.

First, the private insertEdgesToSink method is called to create a map-
ping between the sink node(s) of the control flow graph and its immediate
predecessors. In the case of finding postdominators, the mapping is between
the sink node’s predecessors and the sink node®.

The dominance relationship among the nodes in the control flow graph
is conceptually represented by a two-dimensional bit matrix. If node z
dominates node y, then bit (z,y) will be set in the matrix. Initially, all of
the bits in the matrix are set, except for the row corresponding to the root
node. The root node’s row has one bit set, the bit corresponding to the root
(i.e. the root dominates itself).

Then every block in the graph is examined in order and their dominators
(not immediate dominators, that will be done later) are computed.

Dominators[n] = n'U (Npepreapn) Dominators[p])

*I’'m not too sure why this is necessary. The behavior of this algorithm appears to
imply that the sink node is not connected to the rest of the graph. However, as far as I
can tell, it is.

62 CHAPTER 5. CONTROL FLOW GRAPHS

Block | Is dominated by

1

12
124
1245

OOl UV x| DN|

Figure 5.2: A Dominator Tree

This dominator information is then used to compute each node’s imme-
diate dominator. The immediate dominator of a block z is computed by
removing all blocks from z’s dominator set that themselves dominator one
of z’s dominators®. Let’s go through an example using the dominator tree
in figure 5.2.

Let’s say we want to find the immediate dominator of 8. We start with its
set of dominators, {1 2 4 5}. We examine each block in this set and remove
its dominators. So, we remove block 1’s dominators (none). We remove
block 2’s dominators (1) leaving {2 4 5}. We remove block 4’s dominators
leaving {4 5}. Finally, we remove block 5’s dominators leaving {5} which is
block 8’s immediate dominator.

After ensuring that a block has only one immediate dominator, buildTree
determines each block’s immediate dominator and notifies the block using
bloat.cfg.Block’s setDomParent method (see section 5.2).

5.6.2 Computing the Dominance Frontier

bloat.cfg.DominanceFrontier calculates the dominance and postdomi-
nance frontiers of the nodes in a FlowGraph. The public static method

51s there a nicer way to say this?

5.6. INITIALIZING THE CONTROL FLOW GRAPH 63

buildFrontier is called to calculate the frontiers. However, the actual
work is performed by the private calcFrontier method.

A Block n’s dominance frontier is the union of two sets. The first set
consists of the blocks in the dominance frontier of the nodes that n dominates
that themselves are not dominated by n’s immediate dominator. This set
is calculated by iterating over the blocks that n dominates and recursively
determining their dominance frontiers. If n is not the immediate dominator
(i.e. parent in the dominator tree) of a block z in one of these dominance
frontiers, then z is in the dominance frontier of n.

The second set consists of the successors of n (in the control flow graph)
that are not strictly dominated by n. calcFrontier maintains an array
of Blocks that represents the a block’s dominance frontier. The array is
indexed by the per-order index of its blocks. Presumably, an array is used
so that no block is added to the dominance frontier twice.

Iterated Dominance Frontier

The iterated dominance frontier for a set of nodes in a control flow graph
is the union of the dominance frontiers of all the nodes in the set. It is
used to determine the nodes into which ¢-nodes should be inserted during
conversion of a control flow graph into static single assignment form (see
section 6.1.1). The iterated dominance frontier for a given set of Blocks is
calculated by FlowGraph’s iteratedDomFrontier method.

5.6.3 Preparing for ¢-statement Insertion

Eventually, we’ll be inserting SSA ¢-statements into the control flow graph.
In order to ensure that the ¢-statements are inserted correctly, we have to
examine some blocks. We must make sure that no block is more than one of:
a catch block (first block in an exception handler that saves the exception),
the entry block of a subroutine, or the target of a subroutine return. If a
block has two or more of these properties, more than one SSA ¢-statement
could be placed in the block.

Luckily, catch blocks and are mutually exclusive with subroutine return
targets and subroutine entry blocks, we only need to ensure that a block is
not an entry block of a subroutine and a return target.

FlowGraph’s splitPhiBlocks method looks at the entry blocks of all of
the control flow graph’s subroutines’ (entrySub in figure 5.3). If an entry
block, splitBlock, is also the target of a subroutine (returnSub) return,
then it needs to be “split”. Two new Blocks are created: the newEntry and

64 CHAPTER 5. CONTROL FLOW GRAPHS

jsr returnSub
/
jsr entrySub returnSub o enrysun | newT:rger |
\ s ..
entrySub j

"splitBlock”

Figure 5.3: Splitting ¢-blocks

newTarget blocks. Both of these blocks jump to splitBlock. The edges in
the control flow graph are adjusted so that all blocks that end in a jsr to
entrySub now point to newEntry and that all return targets of returnSub
jump to newTarget. This process is illustrated in figure 5.3. Dotted arrows
represent the trace order of blocks.

Replacing Blocks

splitPhiBlocks is an example of a place where one Block in the control
flow graph needs to be replaced with another. This process is facilitated
by the bloat.cfg.ReplaceTarget class. ReplaceTarget is a bloat.tree.
TreeVisitor (see section 4.2) that replaces a target block of a jump or
ret with another block. The targets of JumpStmts, the entry blocks of the
targets of JsrStmts, the destinations of RetStmts, the targets of GotoStmts
and SwitchStmts, and the true and false targets of IfStmts are replaced.

5.6.4 Splitting Irreducible Loops

The loop optimizations that BLOAT performs work on reducible loops. Re-
call that a loop is reducible if it has a single entry. The loop header is the
block that dominates all blocks in the loop. An irreducible loop has no one
block entry that dominates all the blocks in the loop. The block chosen
as the entry block of an irreducible loop depends on the path taken by a
depth-first ordering of the control flow graph.

Paul Havlak [Hav97] gives an algorithm that maximizes the number of
reducible loops in a graph by splitting blocks that could be both the header

5.6. INITIALIZING THE CONTROL FLOW GRAPH 65

of reducible and irreducible loops. A back edge is an edge in the control flow
graph whose source is a successor of its destination. A back edge defines
a loop for which its destination is the header. A reducible backedge has
a destination that dominates the source. Havlak’s algorithm guarantees
that every reducible backedge goes to the header of a reducible loop. This
property maximizes the number of reducible loops in the control flow graph
and is performed by adding empty blocks such that no reducible backedge
shares a destination with an irreducible backedge.

Havlak’s algorithm is implemented in the private splitIrreducible-
Loops method of FlowGraph. It iterates over all of the blocks in the control
flow graph. If a block dominates one of its predecessors, then it is a reducible
back edge. All other incoming edges (irreducible backedges) are marked to
be split. The actual work of splitting an edge is done with the private
splitEdge method.

splitEdge first ensures that no edge involving in the source or sink
blocks can be split. A new Block is created and is placed before the desti-
nation of the edge. The expression tree for the new block is just a goto to
the destination block. A ReplaceTarget (see section 5.6.3) is used to adjust
edges, etc. if the destination block is the target of a JumpStmt, etc. Edges
are added from the source block to the new block and from the new block to
the destination block. The old edge from the source block to the destination
block is removed. Later optimization may move code from the destination
block into the new block. So, if the destination block is a protected block,
then the new block must also be a protected block. Thus, Handler (see
section 5.3) objects, et. al. must be adjusted accordingly.

5.6.5 Splitting Reducible Loops

splitReducibleLoops ensures that each loop has a unique header block, by
splitting loop headers such that no reducible backedge shares a destination
with another reducible backedge. It iterates over all blocks in the control
flow graph and notes the reducible backedges.

For each block that is the destination of a reducible backedge, its pre-
decessor with the lowest pre-order (depth first) index, min, is located. The
edge from min to the block in question, header, is split. All other reducible
backedges incident on header are adjusted to point to the new block. This
process is repeated on the new block until the new block is the target of
only one reducible backedge.

66 CHAPTER 5. CONTROL FLOW GRAPHS

5.6.6 Determining the Types of Blocks

The private setBlockTypes method of FlowGraph iterates over every Block
in the control flow graph. It uses an algorithm presented in [Hav97] to
determine whether a block is a NON_HEADER, REDUCIBLE, or IRREDUCIBLE.
Initially, each block’s loop header is set to the source block (except for the
source block whose header is null) and a list of back edges and non-back
edges is assembled.

The blocks are again iterated over in reverse pre-order so that the inner-
most loops are visited first. A bloat.util.UnionFind (see section 2.2.2)
is used to store the indices that represent blocks in the various loops. For
each loop header, the back edges are followed to construct the body of the
loop. If one of the blocks in the loop body is not a descendent of the loop’s
header, then there is another entry path into the loop, and the loop (and
thus its header) is irreducible. The blocks in the loop are merged (unioned)
into the header’s set in the UnionFind. To prevent further agony at the
hand of exceptions, all loops that contain jsr or catch blocks are labeled as
irreducible.

5.6.7 Building the Loop Tree

A loop tree represents the nesting hierarchy of loops in a control flow graph.
Each node in the loop tree is an instance of LoopNode (that extends bloat.
util.GraphNode, see section 2.2.1), a private class in FlowGraph that con-
tains a header Block, the depth and the level of the loop, and the Blocks
that comprise the loop. Each node is the loop tree is associated with its
header block.

The root of the loop tree is the source block of the control flow graph,
itself a header block. The blocks in the control flow graph are iterated over.
Each block is added to the loop tree of its header block. If the block itself is
a header block, a new loop tree node is created for it. An edge in the loop
tree from the outer loop node to the inner loop node is created.

Once the loop tree has been constructed, the depth and level of each
node is calculated. The root node of the loop tree has depth 0. The leaf
nodes of the loop tree have level 0. Depth and level are calculated by a
pre-order and post-order traversal of the loop tree, respectively.

5.6.8 Peeling Loops

We would like to move loop invariant code out of a loop. However, we can
only evaluate an expression that has side effects in the context in which it

5.6. INITIALIZING THE CONTROL FLOW GRAPH 67

occurs. For example, if an expression may thrown an exception, we must
guarantee that all preceding expressions that may thrown exceptions are
evaluated first.

Loop peeling copies the first iteration of a loop, causing it to be executed
before the remaining iterations. Loop peeling also results in loop inversion
whereby a loop’s condition is placed at the end of the loop (i.e. converts
a “while” loop into a “do-while” loop preceded by a condition). Note that
neither loop peeling nor loop inversion can be performed on irreducible loops.
Because loop peeling can result in a significant increase in code size, it is
only performed on the innermost loops (i.e. with level 0). Additionally, only
loops that contain code that has side effects and can be hoisted are peeled.

BLOAT performs loop peeling in the private peelLoops method of Flow-
Graph. The class variable PEEL_LOOPS_LEVEL determines the maximum
(loop nesting) level at which loops can be peeled. Recall that the inner-
most loops have level 0. There are two class constants, PEEL NO_LOOPS and
PEEL_ALL_LOOPS that have obvious meaning.

peelLoops first makes a list of all blocks in the control flow graph in
which an exception could occur and can be hoisted. Exceptions can occur
in CastExprs, ArithExprs, ArrayLengthExpr, and FieldExpr when their
operands are LeafExprs.

The nodes in control flow graph’s loop tree (see section 5.6.7) are visited
in post-order (i.e. innermost loops are visited first). A list of loops to be
peeled is assembled. Irreducible loops as well as the outermost loop cannot
be peeled. The loops that are candidates for peeling are examined. If a block
in the loop contains an expression that can be hoisted (and the peeling level
has not been exceeded), then the loop can be peeled. If a loop cannot be
peeled, it may still be able to be inverted. As long as loop’s header has an
edge to a block that is not in the loop, then it can be inverted.

A list of blocks that may exit the loop (i.e. the blocks that may thrown
an exception and the blocks that have a successor that lies outside the loop)
is assembled. By examining the predecessors of the blocks in this list, we
determine the blocks in the loop that need to be copied. Copies of blocks
are made with the private copyBlock method. copyBlock simply creates
a new Block with an expression tree that has the same initial stack as the
original block. A clone of all the statements in the block (except for any
LabelStmts, see section 4.6) is added to the new block.

The copy of the loop is added to the trace of blocks of the control flow
graph after the “latest” (i.e. has the highest pre-order index) predecessor of
the loop header. Edges are added between the blocks in the copied loop to
duplicate the behavior of the original loop. Finally, edges entering the loop

68 CHAPTER 5. CONTROL FLOW GRAPHS

are adjusted to enter the peeled loop instead.

5.6.9 Removing Critical Edges

A critical edge is an edge from a block with more than one successor to
a block with more than one predecessor. Critical edges can hinder code
motion and should be removed. Splitting critical edges creates a block in
which code can be placed during partial redundancy elimination and when
translating the control flow graph back from static single assignment form.
Critical edges often occur from a block inside a protected region to a block
in an exception handler. These edges cannot be split without creating a new
exception handler. So, they are not split and are given special treatment
during PRE and SSA destruction.

FlowGraph’s private removeCriticalEdges method constructs a list a
critical edges in the control flow graph. Edges whose destination blocks are
inside subroutines or exception handlers, or edges whose destination is the
sink block are ignored. All other edges whose destination has more than one
predecessor and whose source has more than one successor are added to the
list of critical edges. splitEdge (section 5.6.4) is called to insert a block
between the source and destination blocks of the critical edge. Splitting the
edge, in turn, removes the critical edges form the control flow graph.

5.6.10 Inserting Stores after conditional statements

Some conditional statements allow us to make certain assertions about ex-
pressions. Consider the following code.

if (a+b == c+d)
X

else
Y

Knowing that a+b indeed equals c+d can help when performing constant
and copy propagation. We can add a store (assignment statement) that can
be used in constant and copy propagation after the conditional to represent
the equality.

if((e = a+b) == (f = c+d))
e =1f
X

else
Y

5.6. INITIALIZING THE CONTROL FLOW GRAPH 69

This transformation is only performed when the compared expressions
are non-leaf and are not reference types. Consider the following example
that involves reference types.

class A {};
class B extends A { void foo(); }

A a = someA(); // Returns an instance of A
B b = someB(); // Returns an instance of B
if(a == b) {

b.foo();
}

If we were to insert an assignment after the if, the type information
would be incorrect.

if(a == b) {
b = a; // b now has type A, not B
b.foo();

}

FlowGraph’s private insertConditionalStores method does the work
of adding the assignment statements to the conditionals. It examines the last
statement in every block in the control flow graph. Recall that conditional
statements end blocks because they cause a change of control flow.

If the last statement in a block is an IfCmpStmt, then the following
occurs. If the true and false targets of the if statement are the same, then
do nothing. This should not occur because critical edges were removed. If
the comparison being made is an equality (IfStmt.EQ), then any assignment
statement will be placed in the “true” target. Conversely, if the comparison
being made is an inequality (IfStmt.NE), then any assignment statement
will be placed in the “false” target. If any other comparison is being made,
the conditional is ignored.

The conditional (equality or inequality) has a left and a right expres-
sion. If either expression is not a leaf expression (see LeafExpr, see section
4.7), the it is replaced with a StoreExpr (see section 4.5.1) that stores the
expression into a new local variable (e.g. replace a+b with e = (a+b)). An
assignment to the local variable is prepended to the expression tree of the
(true or false) target block (e.g. add e = f to the target block).

70 CHAPTER 5. CONTROL FLOW GRAPHS

The process for handling the case when the last statement in a block is
an IfZeroStmt is similar. However, we only need to be concerned with the
left expression because we know that the right expression is 0 or null. If
the left expression is not a reference type and is non-leaf, it is replaced by an
assignment to a new local variable. The left expression (now a local variable
reference) is then examined. If it is an integer, then it will be assigned 0,
else it will be assigned null. The assignment is prepended to the target
block.

If the last statement in a block is a SwitchStmt, certain assertions about
the integer index variable may be made in the “target blocks”. For instance:

switch(index) {
case O:
index = 0;

break;

case 4:
index = 4;

break;

Note that the assertions cannot be made when a target corresponds to
multiple index values.

switch(index) {
case O:
index

0;
break;

case 1:

case 2:

index
index

1;
2; // WRONG!!

break;

5.6. INITIALIZING THE CONTROL FLOW GRAPH 71

The targets of a SwitchStmt that are not used for multiple index values
have a assignment to index prepended to them. The process is similar to
that for IfCmpStmt and IfZeroStmt.

5.6.11 Inserting Stores Before Protected Regions

To facilitate code generation of PhiCatchStmts, statements that copy local
variables are inserted before jumps to protected blocks. This ensures that
locals used by the jump statement are not redefined. FlowGraph’s private
insertProtectedRegionStores method compiles a list of blocks whose last
statement is a jump to a protected block.

insertProtStores is called to do the work of inserting the copy state-
ments to the blocks. It maintains an array of the defining expressions
(LocalExprs) that define local variables. Each expression (Expr) in the
jump statement is saved to a stack variable (StackExpr). For each block
that ends in a jump to a protected block, a statement that makes a copy of
each local variable in use is inserted before the jump. This process starts
with the source block and is repeated for all of the blocks that are dominated
by the block in question.

5.6.12 Verifying the Correctness of the Control Flow Graph

The vast majority of what BLOAT does involves changing the control flow
graph. A control flow graph is verified to ensure that it is still consistent
and correct after a transformation. VerifyCFG, a subclass of bloat.tree.
TreeVisitor, traverses a FlowGraph and performs various checks on its
nodes. While checking a control flow graph, VerifyCFG keeps track of the
Block in which it expects expression tree nodes to reside, the expected
parent block of expression tree node being checked, all of the expressions in
the control flow graph that are uses of a variable, and all of the nodes in
the expression tree that have been visited. Because value numbers may not
have been assigned yet, verifying them is optional.

Verifying a FlowGraph involves examining its basic blocks and expression
trees. It is checked to make sure that all uses of variables defined in the
control flow graph reside within the FlowGraph.

When a Block is checked, it is verified that it is indeed in the control
flow graph. If the block begins an exception handler, then it is ensured that
all of the protected blocks have edges to the handler block. It is also verified
that each of the block’s successors has a corresponding predecessor and vice
versa.

72 CHAPTER 5. CONTROL FLOW GRAPHS

Statements that involve a change in control flow all have targets that
must be verified. A list of targets for each RetStmts, JsrStmts, SwitchStmts,
IfStmts, and GotoStmts is compiled. The private verifyTargets method
is called to ensure that the number of targets equals the block’s number of
successors, that the targets all reside in the control flow graph, and that
every target is a successor of the block.

When a StoreExpr is verified, if desired, its value number is checked to
make sure that it is not -1. Its block and parent Node are compared against
the expected values. If the StoreExpr’s type is VOID, then it is verified that
it is not nested in any other expression (i.e. its parent node is an ExprStmt).

The children of of Nodes are verified to make sure that they are correct.
If desired, the value numbers of Exprs are checked to make sure that they
are not -1.

VarExpr are verified to ensure that they either define a local variable, are
defined by another expression, or are the child of a PhiStmt (a ¢-operand).

5.6.13 Committing Changes to the Control Flow Graph

Once a control flow graph has been modified by various optimizations, its
changes are committed back to its MethodEditor using the commit method.
First, new bytecode for the method modeled by the control flow graph is
generated by a bloat.codegen.CodeGenerator (see section section 7.3).
Second, information about the various exceptions in the program is gen-
erated. From each Handler (see section 5.3) object associated with the
FlowGraph, a bloat.editor.TryCatch (see section 3.3.1) is generated. Re-
call that a TryCatch consists of the label of the first and blocks in the
protected region, the label of the first block of the exception handler, and
the Type of the exception being caught. The TryCatchs are added to the
MethodEditor.

5.6.14 Looking at Control Flow Graphs

Now that we’ve all learned more about control flow graphs than we’ve ever
wanted to know, we can start working with them. To make working with
control flow graphs tolerable’, BLOAT has several mechanisms for displaying
control flow graphs.

"Tony once told me that Nate used to have dreams about control flow graphs. I call
these nightmares.

5.6. INITIALIZING THE CONTROL FLOW GRAPH 73

Printing Expression Trees

The bloat.tree.PrintVisitor (see section 4.2) class is a TreeVisitor
that generates a textual representation of the nodes in an expression tree
to a java.io.PrintWriter. The following is an alphabetical summary of
text generated by PrintVisitor. Note that if the expression tree node
terminates a block (e.g. IfZeroStmt, GotoStmt, and RetStmt) caught by is
printed followed by a list of the first blocks in the handlers for any exceptions
that may be thrown in the block terminated by the statement.

AddressStoreStmt Prints La (“load address”) followed by the integer index
of the subroutine’s return address.

ArithExpr Prints the left-hand Expr followed by the operator (+ - * /,
etc.) and the right-hand expression. Note that <=> is compare, <1=>
is compare less-than, and <g=> is compare greater-than.

ArrayLengthExpr Prints the array Expr followed by .length.

ArrayRefExpr Prints the array Expr followed by the index Expr surrounded
by brackets.

Block Prints the block’s label, its type, and the label of its header block
if it is in a loop. It is also noted if the block is the source, sink, or
init block of its control flow graph. If the block begins an exception
handler, the type of exception that it catches and a list of its protected
blocks is also given. Its contents (children) are then printed.

CallMethodExpr Prints the receiver Expr, the name of the method, and the
parameter Exprs.

CallStaticExpr Prints the Type of the class on which the method is in-
voked, the name of the methods, and the parameter Exprs.

CastExpr Prints the Type to which to cast followed by the Expr to be cast.
CatchExpr Prints Catch followed by the type that is caught.

ConstantExpr If the constant is a String its first 50 characters are printed.
Non-printable whitespace is ignored. If the constant is a Float, then
the value is printed followed by an F. If the constant is a Long, then
the value is printed followed by a L.

Expr By default, prints EXPR.

74 CHAPTER 5. CONTROL FLOW GRAPHS

ExprStmt Prints eval followed by the expression in the ExprStmt.
FieldExpr Prints the object Expr followed by a . and the name of the field.

FlowGraph Prints the source block, followed by all of the control flow blocks
in trace order, followed by the sink block.

GotoStmt Prints goto followed by the target Label.

IfZeroStmt Prints if0 followed by the type of comparison. If the statement
compares against a reference type, null is printed, else 0 is printed.
The right-hand expression in the comparison is printed followed by the
then and else targets.

InitStmt Prints INIT followed by the LocalExprs that are initialized.
InstanceOfExpr Prints instanceof followed by the Type of the check.

JsrStmt Prints jsr followed by the entry block of the subroutine, ret to,
then the block two which control is returned.

LabelStmt Prints the Label as label_indez.

LocalExpr If the variable is allocated on the stack, a T is printed, else a L is
printed. The Type of the variable followed by its index (local variable
number or offset into stack). If the LocalExpr is defined by a DefExpr,
its (SSA) version number is printed. Otherwise undef is printed. For
instance, if local variable 1 contains a reference and has version 6, it
will be represented by Lr1_6.

MonitorStmt Prints either enter or exit and the prints the object whose
monitor is being entered or exited.

NegExpr Prints a - followed by the Expr that is negated.

NewArrayExpr Prints new, the Type of the array to be allocated, followed
by the size of the array surrounded by braces.

NewExpr Prints new followed by the Type of object to be created.

NewMultiArrayExpr Prints new, the Type of the array to be allocated, fol-
lowed by the dimensions surrounded by brackets.

PhiCatchStmt Prints the target VarExpr, an :=, and a list of the operands
to the PhiCatchStmt.

5.6. INITIALIZING THE CONTROL FLOW GRAPH 75

PhiJoinStmt Prints the target VarExpr, an :=, and a list of the operands
with the blocks from which they came.

RCExpr Prints rc followed by the Expr being checked.

RetStmt Prints ret from followed by the entry Block of the subroutine
from which it is returning.

ReturnAddressExpr Prints returnAddress

ReturnExprStmt Prints return followed any expression that may be re-
turned.

SCStmt Prints aswizzle followed by the array Expr and the index Expr.

ShiftExpr Prints the Expr to be shifted, << for left shift, >> for right shift,
or >>> for an unsigned right shift, followed by the Expr specifying the
number of bits.

SRStmt Prints aswrange array: followed by the array Expr and the start-
ing and ending Exprs.

StackExpr Prints S, by the Type of the stack expression, followed by the
offset into the stack. If the stack variable has a known definition
(DefExpr), its version number is printed, else undef is printed.

StackManipStmt Prints the StackExprs that are targets, a :=, the kind of
StackManipStmt (e.g. dup_x1) and then the StackExprs that are the
source.

StaticFieldExpr Prints the name of the class in which the field resides
followed by the name of the field.

Stmt By default, prints STMT.
StoreExpr Prints the target MemExpr, an :=, and the Expr.

SwitchStmt Prints switch, the index Expr, caught by, and then the pairs
of values and targets. The default target is printed last.

ThrowStmt Prints throw followed by the Expr being thrown and the first
block of the exception handler that catches it.

UCExpr If the update check checks a pointer, then aupdate is printed, else
supdate is printed. The expression being checked is printed.

76 CHAPTER 5. CONTROL FLOW GRAPHS

ZeroCheckExpr If a reference type is being checked, then notNull is printed,
else notZero. The Expr to be checked is printed.

Viewing the Control Flow Graph

The print method of FlowGraph prints a textual representation of the con-
trol flow graph to a java.io.PrintStream by using a PrintVisitor. The
printGraph method creates a graphical representation of the control flow
graph using the dot software available from

http://www.research.att.com/sw/tools/graphviz/

dot is used to draw graphs and can generate output in several formats
including Postscript. printGraph uses a PrintVisitor to generate the
nodes of a dot graph. Solid edges in the graph represent normal control flow
edges. Dotted edges represents edges whose destination is the first block of
an exception handler. printGraph works well with small methods (under
50 lines), but tends to get unmanageable with larger control flow graphs.

5.7 Control Flow Graph Examples

Now that we’ve seen how BLOAT models and constructs control flow graphs,
let’s look a several example of Java methods and their control flow graphs.

5.7.1 A Simple Example

To begin with let’s start with a straightforward Java method that demon-
strates an if-statement and some basic arithmetic operators. The source
code and compiled (unoptimized) bytecode are given in Figure 5.4. It’s
control flow graph is given in Figure 5.5.

Let’s examine each block (node) in the control flow graph. The first
block is labeled label_15. This is the source block. The sink block is la-
beled label_17. Note that there is an edge from the source block to the
sink block to represent that the method may not be executed. The block
labeled 1abel_16 is the init block. This block contains an InitStmt that
initializes local variable 0 (Lr0), the this pointer (recall that L stands for
“local variable”, r stands for “reference”, and i stands for “integer”), and
local variable 1 (Lil), the first parameter. Note that boolean values are
represented by integers.

The method’s code begins in the block labeled 1abel 0. The first state-
ment in the block assigns 0 to the second local variable (representing x in

5.7. CONTROL FLOW GRAPH EXAMPLES 7

public int f(boolean b) { public (Z)I £
int x = 0; label_0O
if (b) 1ldc O
return(x + 1); istore Local$2
else iload Local$il
return(x + 2); ifeq label_10
} label_6
iload Local$2
ldc 1
iadd
ireturn
label_10
iload Local$2
ldc 2
iadd
ireturn
label_14

Figure 5.4: Example 1: An if statement and basic arithmetic

the original program). The second statement is an if statement that will
either branch to label 10 or label 6. The blocks labeled 1abel 10 and
label 6 are relatively straighforward. They are both terminated by return
statements and block have edges to the sink block.

5.7.2 Stack Variables

Next we consider a control flow graph that works with stack variables. Recall
that stack variables (StackExprs) arise from dup instructions (see section
4.5.5). As an added bonus, we get to see objects being created and methods
being invoked. Now how much would you pay?

The source code and compiled bytecode for the method in question is
given in Figure 5.6. It’s control flow graph is given in Figure 5.7. As we
can see from the source, a dup instruction is used to make a copy of the
Integer object on top of the stack. The first copy is used as an operand
to the invokespecial instruction that initializes the object (i.e. incokes its
constructor). The second copy is used as the reciever of the floatValue
method (the invokevirtual instruction).

Examining the control flow graph, we see that the source block has
label_14, the sink block has 1abel_16, and the init block has label 1abel_15.
The block labeled 1abel 0 is interesting. The first statement creates a new

78 CHAPTER 5. CONTROL FLOW GRAPHS

| abel _15

| abel _16

INT Lro_2 Li1 3
goto |abel 0 caught by []

| abel _14
I abel _0

eval (Li2_4 :=0)
if0 (Li1l_undef == 0) then <block |abel _10 hdr=nul| > el se <block |abel 6 hdr=nul | > caught by []

/

| abel _10 | abel _6
return (Li2_undef + 2) caught by [] return (Li2_undef + 1) caught by []

T

Figure 5.5: CFG for Example 1

| abel _17

Integer and assigns it to the slot on top of the stack, Sr0. Recall that S
stands for “stack variable” and r stands for “reference”. Also recall that
a stack variable with index 0 is at the bottom of the stack. As the stack
grows, the indices increase. The next statement represents the dup instruc-
tion. The top two slots on the stack (Sr0 and Sr1) contain what used to be
on top of the stack (Sr0). The next statement calls the Integer constructor
on the object on top of the stack (Sr1). The statement after that invokes
the floatValue method on the object on top of the stack (Sr0) and assigns
its result to the second local variable (L£2).

5.7.3 Exceptions

Next, we look at a method that contains an exception handler. Its source
code is given in Figure 5.8. Its control flow graph is given in Figure 5.9.
There are two interesting things to notice. First of all, the branch state-
ment that terminate the block labeled 1abel 0 has a “caught by” clause
associated with them. Any exceptions that occur in this block will trans-
fer control to the block labeled 1abel_37, the “catch block”. This block
pushes the exception object onto the stack. Edges in the control flow graph

5.7. CONTROL FLOW GRAPH EXAMPLES 79

public void g(int i, float x) {
x = (new Integer(i)).floatValue();
}

public (IF)V g
label_0
new Ljava/lang/Integer;
dup
iload Local$l
invokespecial <Method java/lang/Integer.<init> (I)V>
invokevirtual <Method java/lang/Integer.floatValue ()F>
fstore Local$2
return
label_13

Figure 5.6: An example using dup and stack variables

| abel _14

/

| abel _15
INNT Lr0_2 Li1 3 Lf2 4
goto |abel _0 caught by []

| abel _13
Tabel”_0
eval (Sr0_5 := new Ljava/lang/Integer;)
(Sr0_7, Sr1_9) := dup(Sr0_undef)

eval Sr1_undef.<init>(Li1_undef)
eval (Lf2_12 := Sr0_undef.fl oatVal ue())
return caught by []

| abel _16

Figure 5.7: Control Flow Graph for Figure 5.6

80 CHAPTER 5. CONTROL FLOW GRAPHS

that are taken when an exception occurs are dotted. There is also some
interesting stuff that goes on in the exception handler (the “catch body”,
block label 9). Recall that when an exception occurs the exception object
is pushed onto the stack. Since the exception handler makes use of the
exception object, the object is popped off of the stack and placed in local
variable 2 (Lr2). Recall that the + string operator in the Java language is
just syntactic sugar for StringBuffer’s append method.

5.7.4 A Finally Clause

A JVM subroutine is used to implement the finally clause of an exception
handler. An example method containing a finally clause is given in Figure
5.10. It’s control flow graph is rather large and is shown in Figure 5.11.
Before we discuss the finally clause, note that this method references a
field. The block labeled label O contains an assignment to field i. The
object whose field is being assigned to (which in this case is the this pointer
stored in local variable 0, Lr0) is wrapped inside a ZeroCheckExpr (the
notNull.

Now, let’s consider the exception. The method call in the block labeled
label_ 0 may throw an exception. The “catch block” for the exception is
labeled 1abel 48. The “catch body” is labeled label_12. (I'm not too sure
what the purpose of the blocks labeled 1label 49 and label_26 are. They
appear to be catching some exception that isn’t thrown. This may be a
bug.) Both the exceptional and the non-exceptional flows bottom out in the
block labeled 1abel 20 that contains a jsr that jumps to a subroutine that
begins with the block labeled 1abel_32. The subroutine’s return address is
store in local variable 2, La2.

5.8 Summary

BLOAT performs its optimizations on a method’s control flow graph. A
control flow graph is a directed graph consisting of basic blocks of instruc-
tions. Special provisions must be made to accommodate exceptions and
subroutines. Each basic block begins with a label that is the target of a
branch and ends with a branch instruction. The instrucions in a block are
modeled by an expression tree. Properties of the control flow graph such
as its dominator tree, loop tree, and a block’s dominance frontier can be
calculated. A couple of transformations such as loop peeling, loop splitting,
and removal of critical edges are performed on the control flow graph to
enable certain optimizations.

5.8. SUMMARY 81

public void h() {

}

try {
int i = Integer.parseInt("123");
} catch(NumberFormatException ex) {
System.out.println("NFE: " + ex);
}

public OV h

label_0

ldc "123"

invokestatic <Method java/lang/Integer.parselnt (Ljava/lang/String;)I>

istore Local$1l

label_6

goto label_32

label_9

astore Local$2

getstatic <Field java/lang/System.out Ljava/io/PrintStream;>

new Ljava/lang/StringBuffer;

dup

ldc "NFE: "

invokespecial <Method java/lang/StringBuffer.<init> (Ljava/lang/String;)V>

aload Local$2

invokevirtual <Method java/lang/StringBuffer.append
(Ljava/lang/0Object;)Ljava/lang/StringBuffer;>

invokevirtual <Method java/lang/StringBuffer.toString ()Ljava/lang/String;>

invokevirtual <Method java/io/PrintStream.println (Ljava/lang/String;)V>

label_32

return

label_33

Figure 5.8: An Example Containing an Exception Handler

82 CHAPTER 5. CONTROL FLOW GRAPHS

| abel _34

| abel _35
INIT Lro_3
goto | abel _0 caught by []
| abel _33

| abel _0
eval (Lil1_4 := Ljava/lang/Integer;.parselnt(’123"))
goto | abel _6 caught by [<bl ock |abel _37 hdr=null>]

Y
| abel _37

eval (Sr0_2 := Catch(Ljava/lang/ Nunber For mat Exception;))
goto |abel _9 caught by []

Tabel 0
eval (Lr2_7 := Sr0_undef)

eval (Sr0_9 := Ljaval/lang/System . out)

| abel _6 eval (Sr1_11 := new Ljava/lang/StringBuffer;)
goto | abel _32 caught by [] (Sr1_13, Sr2_15) := dup(Sril_undef)
eval Sr2_undef.<init>('NFE ')

eval SrO_undef. println(Srl_undef.append(Lr2_undef).toString())
goto | abel _32 caught by []

| abel _32
return caught by []

| abel _36

Figure 5.9: CFG Containing an Exception Handler

5.8. SUMMARY 83

int i;
public void i() {

}

try {
i = Integer.parselnt("123");

} catch(NumberFormatException ex) {
System.exit(1);

} finally {
System.out.println("Done");

}

public OV i

label_0

aload Local$0

ldc "123"

invokestatic <Method java/lang/Integer.parselnt (Ljava/lang/String;)I>
putfield <Field Finally.i I>

label_9

goto label_20

label_12

pop

ldc 1

invokestatic <Method java/lang/System.exit (I)V>
goto label_20

label_20
jsr label_32
label_23
goto label_43
label_26

astore Local$l

jsr label_32

label_30

aload Local$1l

athrow

label_32

astore Local$2

getstatic <Field java/lang/System.out Ljava/io/PrintStream;>
ldc "Done"

invokevirtual <Method java/io/PrintStream.println (Ljava/lang/String;)V>
ret Local$2

label_43

return

label_44

Figure 5.10: A Java Method Containing a finally Clause

84

CHAPTER 5. CONTROL FLOW GRAPHS

I abel _45

I'abel _46
INIT Lro_4
goto label _0 caught by []
| abel _44
I abel _0
eval (notNull(Lr0_undef).i := Ljava/lang/Integer;.parselnt(’123')

goto I abel 9 caught by [<block |abel 48 hdr=nul >, <block |abel 49 hdr=nul | >]

»

| abel _48
eval (Sr0_2 := Catch(Ljavallang/ Number For mat Except i on;))
goto label _12 caught by [<block |abel _49 hdr=nul | >

I abel _12
eval Sr0_undef
eval Ljavallang/ System. exit(1)
goto label _20 caught by [<block |abel _49 hdr=nul | >

TN | PPN

I abel _9
goto label _20 caught by [<block |abel _49 hdr=nul | >

| abel _49
eval (Sr0_3 := Catch(Lnull!;))
goto |abel _26 caught by []

jsr <block |abel _32

I abel _20
hdr=nul | > ret to <block |abel 23 hdr=null> caught by []

| abel _26
eval (Lrl_11 := SrO_undef)

jsr <block label 32 hdr=null> ret to <block Iabel _30 hdr=null> caught

| abel _32
La2 : = returnAddress
eval Ljava/lang/System . out.println(’ Done')

ret fromsub <block |abel 32 hdr=null> caught by []

I abel _23
goto |abel _43 caught by []

I abel _30 I abel _43
throw Lr1_undef caught by [] return caught by [
I abel _a7

Figure 5.11: A CFG Containing a Subroutine Call

Chapter 6

Static Single Assignment
Form

6.1 Background

Many optimizations need to know where variables are defined (assigned to)
and where they are used. Such information is referred to as the use-def
information. Static Single Assignment Form (SSA) provides a compact rep-
resentation of a variable’s use-def information. SSA form renames each
occurrence of a variable such that each variable is only defined once (i.e.
each variable has a single definition). When the flow of control merges
(e.g. after an if-statement) SSA variables are merged using a ¢-statement.
A ¢-statement is placed at the merge block, has operands corresponding to
each incoming SSA variable, and defines another naming of an SSA variable.
Figure 6.1 gives an example of SSA form.

6.1.1 Placing ¢-functions

Conceptually, ¢-functions are placed at every merge block in the control
flow graph. However, many of these ¢-functions are unnecessary. Merge
points are easily identified by using a block’s iterated dominance frontier (see
section 5.6.2). Recall that block z is in the dominance frontier of block z if
z dominates some, but not all, of z’s predecessors. The iterated dominance
frontier is the union of the dominance frontiers of a set of blocks.

BLOAT uses the so-called semi-pruned SSA form [BCHS98]. Semi-
pruned SSA form takes advantage of the fact that many variables are short-
lived temporaries that exist within a single basic block. It calculates the set

85

86 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

a1 <1
a+1 by <1
{)f(?l 5) th a1 >5H
it (a > en
b b1 / T~
else bo b1 +1 bz <+ b1 —1

b—b-1
c—a+b \ /
b4<—¢(b2,b3)
c1 a1 +bs

(a) Code (b) Its CFG in SSA Form

Figure 6.1: An Example of SSA Form

non_locals « §
for each block B do
killed + 0
for each instruction v -z op y in B do
if (z ¢ killed) then
non_locals < non_locals U {z}
if (y & killed) then
non_locals < non_locals U {y}
killed < killed U {v}

Figure 6.2: Algorithm for finding non-local variables

of variables that are live on entry to at least one basic block, the “non-local”
variables, as shown in figure 6.2. Each basic block is visited once. When
a variable is encountered that is not defined within the block (the “killed”
set), the variable is added to the “non-local” list. So, ¢-functions are only
added for non-local variables in merge blocks. Semi-pruned SSA has the
advantage of inserting a minimal number of ¢-functions without having to
perform expensive variable liveness analysis.

6.1.2 Naming Variables In SSA Form

After the ¢-functions are inserted, the control flow graph is transformed so
that each variable has a single definition and each variable use reflects this
fact. The blocks in the control flow graph are visited in pre-order and the
algorithm in figure 6.3 is applied to each block. As the algorithm proceeds,
a global stack is maintained that keeps track of the current SSA number for

6.1. BACKGROUND 87

each variable. Every time a variable is defined, a new SSA number is pushed
onto the stack. When a use of a variable is encountered, the SSA number
on the top of the stack is assigned to that variable.

6.1.3 Deconstructing SSA Form

Once all of the optimizations have been performed, the ¢-functions must be
removed from the control flow graph. ¢-functions are replaced by a copy
of each operand variable to the target variable in the predecessor block
corresponding to the operand variable. To ensure that the copy is placed
in the correct location, critical edges (see section 5.6.9) are removed from
the control flow graph. Figure 6.4 demonstrates the need to remove critical
edges.

6.1.4 Other ¢-functions

Not surprisingly, special accommodations must be made for dealing with
SSA wvariables in the presence of exceptions. Consider the following. A
protected region defines a program variable several times. An exception
handler makes use of that program variable. When converting into SSA
form, which SSA variable does the exception handler use? The use could
correspond to any one of SSA variables defined in the protected region.
Standard SSA form dictates that edges in the control flow graph be added
to the exception handler from both before and after each assignment to a
local variable in the protected region.

To handle SSA variables inside protected regions, another type of ¢-
statement is used called the “¢-catch” statement, ¢., is used to factor to-
gether all of the SSA variables in a protected region. ¢.-statements are
inserted at the beginning of each basic block that begins an exception han-
dler. The operands of the ¢.-statement are the SSA variables that occur
(used or defined) within the protected region. When ¢.-statements are de-
structed a copy from the operand to the target is inserted just after the
operand’s definition!. It is possible that the operand’s definition may be
far away from the exception handler. As a result, the target could have an
unnecessarily long live range. To alleviate this problem, copies (a — a) of
live variables entering the protected region are inserted. This new definition
of a will cause the copy generated by the ¢. destruction to be inserted as
close to the protected region as possible.

'"Remember that each variable is defined once, so this is okay.

88 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

input:

A CFG, G, after ¢-nodes are placed
output:

The SSA form of G

do
for each variable v do
Stack(v) < 0
Counter(v) « 1

renameBlock (entry)
with
procedure renameBlock(block) begin
for each variable v do
TopOfStack(v) < top(Stack(v))

for each ¢-node, (v) + &(...), in block do
Version((v)) - Counter(v)
push Counter(v) onto Stack(v)
Counter(v) < Counter(v) + 1

for each instruction, (v) + (z) ® (y), in block do
Version({z)) + top(Stack(x))
Version({y)) < top(Stack(y))
Version((v)) <— Counter(v)
push Counter(v) onto Stack(v)
Counter(v) < Counter(v) + 1

for each succ € Succ(block) do
for each ¢-node, (v) « ¢(...), in succ do
(v} < the block-operand of ¢(...)
Version({(v)) < top(Stack(v))

for each child € DomChildren(block) do
renameBlock(child)

for each variable v do
pop Stack(v) until top(Stack(v)) = TopOfStack(v)

Figure 6.3: SSA Renaming (swiped from Nate’s Thesis [Nys98])

6.2. CONSTRUCTING SSA FORM 89

al <
ay < a2 < ai
ay] < a2 < ai

critical

'/\/ az < a2 +1

asz < az + 1
a2 < a3 /\

a2 + ¢(a1,a3)
az < a2 +1

return as az < ag
return as return az
(a) A program with a (b) Incorrect ¢ (c) Correct ¢
critical edge replacement without replacement with

splitting critical edges splitting critical edges

Figure 6.4: Problems with Critical Edges (swiped from Nate’s Thesis)

Subroutines also complicate the SSA representation. The Java Virtual
Machine allows any local variable that is not referenced inside a subroutine
to retain its type. As a result, two variables with incompatible types could
be factored together in a ¢-statement. To solve this problem, if a variable is
not redefined in a subroutine, the SSA number for the variable is propagated
back from the end of the subroutine to the block to which the subroutine
returns, the “return site”. This construct is represented by the “¢-return”
statement, ¢,. Because critical edges were removed from the control flow
graph, the return site has only one incoming edge, and thus the ¢, has only
one operand. ¢,-statements are placed at the return site. During renaming,
the operand of the ¢,-statement is given the SSA number that is on top
of the variable’s renaming stack, the uses of the SSA variables defined by
the ¢,-statements are renamed to the ¢,-statement’s operand, and the ¢,-
statements are removed.

6.2 Constructing SSA Form

BLOAT converts a control flow graph into static single assignment form
using the classes in the bloat.ssa package. The transform method of
bloat.ssa.SSA begins the work of converting a bloat.cfg.FlowGraph into
SSA form. The private collectVars method visits the FlowGraph and
removes any existing bloat.tree.PhiStmts. It also maintains information
about each variable encountered.

90 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

The class bloat . ssa.SSAConstructionInfo maintains information about
a program (as opposed to and SSA) variable (bloat.tree.VarExpr) during
SSA conversion. An instance of SSAConstructionInfo is created for every
variable in the CFG. The SSAConstructionInfo maintains a clone of the
VarExpr it represents (the “prototype”), a list of non-¢-statement occur-
rences of the variable (the “real” occurrences), a list of the real occurrences
of a variable in a given block, the PhiStmts for that variable at each block
(a variable can only be involved in one kind of PhiStmt at a given block),
and a list of bloat.cfg.Blocks in which the variable is defined.

In addition to having methods that work with the information that it
maintains, SSAConstructionInfo has several helper methods. addPhi adds
a PhiJoinStmt for the variable represented by the SSAConstructionInfo to
a given block to the control flow graph?. Similarly, the addRetPhis method
adds a bloat.ssa.PhiReturnStmt to each block to which a Subroutine
may return (see “paths” in section 5.3). The addCatchPhi method adds a
PhiCatchStmt to a block if the variable represented by the SSAConstruc-
tionInfo is a local variable (LocalExpr).

6.2.1 Placing ¢ Statements

As mentioned above, the semi-pruned SSA form only places ¢-statements for
variables that occur in more than one basic block. SSA’s private placePhi-
Functions method inserts PhiStmts into a FlowGraph for a given variable
represented by an SSAConstructionInfo. Each real (non-¢) occurrence of
the variable is examined. If the occurrence is a definition, then the variable
is “killed” in the block in which the definition occurs. If a use of the variable
is encountered in a block in which the variable is not killed, then the variable
is “non-local” and ¢-statements must be placed for it (see figure 6.2).

A PhiCatchStmt for the variable is added to every “catch block” (a block
that begins an exception handler) in the control flow graph3. Similarly, a
PhiReturnStmt for the variable is added at the “return blocks” of every
subroutine in the program. Finally, a PhiJoinStmt (a regular ¢-statement)
is added to every block in the iterated dominance frontier of the blocks in
which a definition of the variable occurs. Recall that once a PhiStmt is

Well, it doesn’t actually add the ¢-statement to the CFG. It only marked as the
PhiStmt at the block. It should also be noted that once a ¢ statement for a given variable
is “inserted” into a block, no other ¢ statement for that variable is inserted. Thus,
the order of insertion determines the precedence of the ¢ statements: PhiReturnStmt,
PhiCatchStmt, then PhiJoinStmt.

3Remember that they’re not really inserted. Most of them are useless.

6.3. RENAMING SSA VARIABLES 91

“added” to a block, no other PhiStmt for the variable in question is added.

6.3 Renaming SSA Variables

The private search method of SSA performs the renaming of SSA variables.
It is similar to the search algorithm given in [CFR91] and [BCHS98] except
that the name stack is implicit in the way in which the method is invoked.
search is called recursively for each variable (SSAConstructionInfo) in the
program and the recursive call begins with the CFG’s source block and an
empty (null) stack.

If the top of the stack is a LocalExpr or if there is a PhiStmt for the
variable in the block of interest, then the private addCatchPhiOperands
is invoked with the variable, the block of interest, and the most recent
definition (either the top of the stack or the target of the PhiStmt). add-
CatchPhiOperands determines whether or not the block is inside a protected
region. If it is, then the variable becomes an operand to the PhiCatchStmt
residing in the protected region’s catch block.

Back in search, if the block of interest is in a protected region and the
variable in a stack variable (StackExpr), then the naming “stack” is cleared
(i.e. set to null) because the runtime stack is popped down to 0 when an
exception is caught.

Each real occurrence of the variable in the block of interest is examined.
If the variable is defined in the block, then this definition becomes the top
of the renaming stack. If the variable is used, we make sure that there is
a valid definition of it (i.e. the top of the stack is not null) and we set its
definition (using the setDef method) to be the variable on top of the stack.

Each of the block’s successors in the control flow graph is visited. If
the successor contains a PhiJoinStmt for the variable in question, then the
operand corresponding to the block (recall that the operands to a PhiJoin-
Stmt are represented by an SSA variable and the predecessor block from
which it arrives to the merge) is assigned the SSA variable (setDef) on
the top of the stack. If the successor contains a PhiReturnStmt, the SSA
variable on top of the stack becomes the definition of the PhiReturnStmt’s
operand.

Finally, search is invoked recursively on each of the block’s children in
the control flow graph’s dominator tree.

The deceptively-named rename method handles the naming (and subse-
quent removing) of PhiReturnStmts. Well, it invokes search first. Recall
that the process of removing PhiReturnStmts entails replacing the uses of

92 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

a — a — a1l <— az < al < a2 <
b1 < b2 < b1 < b2 <
_]sr _]sr jsr jsr jsr jsr
a < ¢(a,a) a3 ¢(a1,a2
b 0(0,0) by = 9(b1,ba) bo = albn,b2)
b3
by — b4e(t_
ret ret v
a < ¢r(a) a — ¢r(a) a4 — ¢r(az) as < ¢r(az) a1 a2
b < ¢r(b) b« ¢r(b) bs « ¢r(ba) be < ¢r(ba) b4 ba
a a a4 as
b b bs be
(a) ¢, placement (b) After ¢, renaming (c) Final SSA form

Figure 6.5: ¢-return (¢,) Example

its target with either the SSA variable that is live at the end of the sub-
routine or the SSA variable that is live upon entry to the subroutine if the
variable did not occur in the subroutine.

Each subroutine in the control flow graph is examined. If the entry
block of the subroutine does not contain a PhiJoinStmt for the variable
in question (the variable is live on only one path through the subroutine),
then the subroutine is uninteresting and all uses of the target SSA variable
will be replaced with the operand SSA variable. Additionally, if there is a
PhiJoinStmt for the variable, but that variable is different from the operand
of the PhiReturnStmt (the variable is redefined inside the subroutine like
variable b in figure 6.5), then the subroutine is also uninteresting.

Otherwise, all uses of the target of the PhiReturnStmt are replaced with
the SSA variable corresponding to the block in which the subroutine was
called (like variable a in figure 6.5). This variable is obtained from the
operands of the PhiJoinStmt. The PhiReturnStmt is removed from the
control flow graph.

Finally, any remaining PhiReturnStmts are examined. These PhiReturn-
Stmts correspond to the “uninteresting” cases mentioned above. The uses of
the targets of these PhiReturnStmt are simply replaced with their operands.

6.4. EXAMPLES OF SSA FORM 93

6.3.1 Modifying the Blocks

The insertCode method actually adds the PhiStmts that were generated
by the “insertion” process to the basic blocks. All of the blocks in the
control flow graph are visited. If there is a PhiStmt for the variable of
interest at a given node (recall that this information is maintained in the
SSAConstructionInfo object), the it is added to the basic block with the
prependStmt method of the block’s expression Tree.

6.4 Examples of SSA Form

Now that we understand what SSA form is for, let’s take a look at a couple
of Java methods that demonstrate it. The first method is very straight
forward. It merely contains an if-statement:

int f(boolean b) {
int x;
x = 1;
if(b)
X = 2;
else
x = 3;
return(x);

It’s control flow graph is shown in Figure 6.6. Note that block 11 contains
eval (Lil_7 := 0)

asserting the fact that the boolean variable b (stored in Lil) is false (see
section 5.6.10). After it is transformed into SSA form, PhiJoinStmts are
placed in the block 13:

<block label_13 hdr=label_16>

label_13

Li1_20 := Phi(label_6=Lil_1, label_11=Lil_7)
Li2_14 := Phi(label_6=Li2_6, label_11=Li2_4)
return Li2_14 caught by []

The definition of Lil in block 11 causes a ¢-statement for Lil to be
inserted in block 13 in addition to the ¢-statement for Li2 (the program

94 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

I abel _16

Iabel _17

INT Lro0Li11
goto Iabel _0 caught by []

I abel _15

I abel _0
eval (Li2_2:=1)
i10 (Li1_undef == 0) then <bl ock Iabel 11 hdr=label _16> el se <bl ock |abel _6 hdr=label _16> caught by [

/

I abel _6
eval (Li2.6:=2)
goto | abel 13 caught by []

I abel _13
Li 2_undef caught by []

N\

| abel _18

Figure 6.6: A Control Flow Graph with an if-statement

variable x). BLOAT also places ¢-statements for Lil and Li2 in the exit.
Personally, I think this is a bug, but it’s a benign one.

Converting to SSA form also assigns definitions to local variables. Notice
how in block 13 in Figure 6.6 Li2 undef is returned. After the SSA trans-
formation, it is established that Li2 in the block 13 is defined by Li2_14 :=
Phi(label_6=Li2_6, label_11=Li2.4).

The next example contains a loop:

int £ {
int x;
x =1;
while(x < 10)
X =x + 1;
return(x) ;

}

Its CFG is given in Figure 6.6. Note the effects of loop inversion (see
Section 5.6.8): The loop’s condition statement is duplicated in blocks 9 and
21. Notice also that the local variable Lil is undefined in blocks 5, 9, 15,

6.4. EXAMPLES OF SSA FORM 95

and 21. Transformation to SSA form results in ¢-statements being placed
in blocks 5 and 15:

<block label_5 hdr=label_9>

label_5

Lil1_15 := Phi(label_24=Lil_4, label_25=Liil_1)
eval (Lil_4 := (Lil1_15 + 1))

goto label_9 caught by []

<block label_15 hdr=label_18>

label_15

Li1_12 := Phi(label_22=Lil1_4, label_23=Lil_1)
return Lil_12 caught by []

Notice that the definitions of Lil have been adjusted.

6.4.1 An Example ¢.,statement

Recall that special arrangements are made for variables that are used inside
an exception handler (see Section 6.1.4). The following example contains an
exception handler in which a variable is used.

int f(boolean b) {
int x;
x =1;
try {
if (b)
X = 2;
else
x = 3;
} catch(Throwable ex) {
System.out.println(x);
}
return(x) ;

}

The control flow graph for this program is given in Figure 6.8. An
exception may be thrown in blocks 2, 6, or 11. The exception is caught
in block 30. The exception handler code is contained in block 16. Since
Li2 is defined (assigned to) inside the protected region (blocks 6 and 11), a
¢.-statement is needed in block 30.

96 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

I abel _18

I'abel _19
INIT Lr0_0

goto |abel _0 caught by []
| abel _17

I abel _0
eval (Lil1:=1)
goto Iabel _21 caught by [

I abel _21
it (Lil_undef < 10) then <block |abel _24 hdr=nul|> el se <bl ock |abel 22 hdr=nul I > caught by []

| abel _24
goto |abel _5 caught by []

| abel _5
- | abel _22
eval (Lil_4 := (Lil_undef + 1)) =
goto label _9 caught by [] goto |abel _15 caught by []

I abel _9
if (Lil_undef < 10) then <block Iabel _25 hdr=nul | > el se <bl ock |abel 23 hdr=nul|> caught by []

| abel _23 | abel _25
goto I abel _15 caught by [] goto | abel _5 caught by []

| abel _15
return Li1_undef caught by []

I abel _20

Figure 6.7: A Control Flow Graph Containing a Loop

6.5. SUMMARY 97

<block label_30 hdr=label_27>

catches Ljava/lang/Throwable;

protects [<block label_6 hdr=label_27>, <block label_11 hdr=label_27>,
<block label_2 hdr=label_27>]

label_30

Lr0_51 :

Phi-Catch(Lr0_13)

Lil_34 := Phi-Catch(Lil_15, Lil_12)
Li2_23 := Phi-Catch(Li2_17, Li2_11, Li2_5)
eval (Sr0_0 := Catch(Ljava/lang/Throwable;))

goto label_16 caught by []

The ¢ -statement for Lr0, the this pointer, is not strictly necessary.
Recall that in the exception handler, the exception object is placed on top
of the stack (the eval Sr0_undef in block 16). Transformation to SSA form
also fixes definitions of stack variables. After SSA transformation block 16
contains eval Sr0_0. The merge block 24 contains

<block label_24 hdr=label_27>
label_24
Lr0_52 :

Phi(label_13=Lr0_13, label_16=Lr0_51, label_31=Lr0_13)
Sr0_44 := Phi(label_13=Sr0O_undef, label_16=Sr0_0, label_31=Sr0_undef)
Li1_35 := Phi(label_13=Lii1_12, label_16=Lil_34, label_31=Lii1_15)
Li2_24 := Phi(label_13=Li2_5, label_16=Li2_23, label_31=Li2_11)
return Li2_24 caught by []

It looks like there is extra work being done. While it does increase the
amount of storage necessary for the CFG and may slow down the optimiza-
tions, it does not hurt us.

6.5 Summary

Many of the optimizations that BLOAT performs rely on knowning a vari-
able’s definitions and uses. Static single assignment (SSA) form compactly
represents the use-def information by renaming variable that each is defined
only once. When two SSA namings of the same variable reach a merge
point in the control flow graph, a ¢-statement is inserted that represents
the merging of the two variables. Traditional SSA form does not properly
handle Java exceptions. Consequently, BLOAT introduces ¢-catch and ¢-
return statements to merge variable information across exception handlers
and subroutines.

98 CHAPTER 6. STATIC SINGLE ASSIGNMENT FORM

| abel _27
| abel _28
INT LrO_1 Li1 2
goto label _0 caught by []
| abel _26
Tabel _0
eval (Li2.3:=1)
eval (Lr0_13 := Lr0_undef)
eval (Li1_15 := Li1_undef)
eval (Li2_17 := Li2_undef)
goto | abel _2 caught by [<block |abel 30 hdr=label 27>]
| abel _2
if0 (Li1_undef

== 0) then <block |abel _11 hdr=| abel _27> el se <bl ock |abel _6 hdr=l abel _27> caught by [<bl ock |abel _30 hdr=l abel _27>]

| abel _11 :
ps I abel _6 .
eval (Li1.12 := 0 -
eval ((u Ss .- 3) eval (Li2_11 := 2) :
goto I abel 13 caught by [<bl ack |abel 30 hdr=l abel 275] goto |abel _31 caught by [<block |abel _30 hdr=label _27>] -

o Y Py
| abel _30
| abel _13 =
= eval (Sr0_0 := Catch(Ljava/lang/ Throwabl e;))
goto label _24 caught by [] gotn label. 16 caught by []
| abel _16
| abel _31 eval Sr0_undef
goto |abel _24 caught by [] eval Ljava/lang/System.out.println(Li2_undef)
goto |abel _24 caught by []

| abel _24
return Li2_undef caught by []

I abel _29
(0,0)

Figure 6.8: A Control Flow Graph with Exception Handling

Chapter 7

Code Generation

After performing analysis and optimization BLOAT converts the control flow
graph back into a Java bytecode method. The classes in the bloat.codegen
package perform a liveness analysis and subsequent “register allocation” on
the local variables used in a method. A couple of simple optimizations on
the control flow graph are performed before the code is generated.

7.1 Liveness Analysis

The code generation phase treats local variables as registers and attempts to
allocate them efficiently. The bloat.codegen.Liveness class creates an in-
terference graph for the local variables (bloat.tree.LocalExpr see section
4.5.5) used in a method. Each local variable has a node in the interference
graph. An edge between two nodes indicates that the corresponding vari-
ables are simultaneously live. A variable is live at a given program point
if it may be needed later in the program. That is, a variable v is live at a
program point p if there is a path in the control flow graph from p to a use
of v. The construction algorithm essentially traces backwards in the control
flow graph from each use of a variable, v, to its definition. (Remember that
the CFG is in SSA form, so each variable has only one definition.) Any
other local variable, w, that is defined between v’s definition and final use,
interferes with v and causes an edge between v and w to be added to the
graph.

Liveness analysis is performed on a bloat.cfg.FlowGraph. Liveness’s
private computeIntersections method begins the work of constructing the
interference graph. The interference graph is a bloat.util.Graph with
nodes of type IGNode, a local class of Liveness that consists of a LocalExpr

99

100 CHAPTER 7. CODE GENERATION

representing a variable that occurs in the method and a List of statements
in which the variable is defined!. The basic blocks in the control flow graph
are visited in trace order?. Each expression tree is visited twice in backward
order using a bloat.tree.TreeVisitor to gather some information about
variables that occur in the method. For each block, a mapping between the
variables that occur in that block and in what order they occur is main-
tained. For each block we also keep a list of all of the variables (nodes in the
interference graph) that are defined in that block. The first pass examines
each bloat.tree.PhiJoinStmt and the second examines each bloat.tree.
LocalExpr and bloat.tree.PhiCatchStmt.

Once all of the variable definitions in the program have been visited and
the nodes in the interference graph have been created, analysis is performed
to determine which nodes interfere with each other. First the live out vari-
ables are computed. A variable is live out for a given block, b, if the variable
is used in a successor of b. The private method 1iveOut is used to determine
at which blocks a variable is live out. This information is propagated from
a variable’s use to its definition.

Special care must be taken when computing the live range of a variable
that is the target of a PhiCatchStmt. The target variable must be live
throughout the entire catch block as well as after its re-definition by the
PhiCatchStmt. However, we don’t want the target to conflict (interfere)
with any of the PhiCatchStmt’s operands. So, we make each target interfere
with all of the variables that the operands interfere with. The analysis
performed by liveOut ensures that ¢-catch targets do not interfere with
their operands. The interference edges between the ¢-catch targets and the
variables that interfere with their operands are added at the end.

Liveness has methods that work with the interfere graph. For instance,
a variable can be removed from the interference graph, a list of variables
(LocalExprs) that interfere with a given variable can be obtained, and it
can be determine whether or not two variables interfere.

7.2 Register Allocation

Even though the Java Virtual Machine does not have registers in the tra-
ditional sense, efficient allocation of JVM local variables can be beneficial.

1T don’t why a list is used instead of a set. Each variable should only be defined once
because the CFG is in SSA form.

*Nate notes that the code generation of ¢s depends on going in trace order. I'm not
too sure why. I guess trace order ensures that ¢-operands will be encountered before
¢-statements.

7.2. REGISTER ALLOCATION 101

Variables that are accessed often (such as those that are accessed within
deeply nested loops) are allocated to the first four local variables. Instruc-
tions such as iloadl may run faster than their two-byte counterparts (iload).
Luckily, allocating local variables is not as complex as allocating registers.
For instance, we do not have to worry about “spilling” and recomputing the
interference graph.

The bloat.codegen.RegisterAllocator class examines the variables
used in a method (FlowGraph) using its liveness analysis (Liveness). Based
upon the interference graph constructed for the liveness analysis, a new inter-
ference graph containing the same interference relationships is constructed
containing nodes with additional information such as whether or a node is
a wide value (wide values require two local variables), the color (local vari-
able) assigned to the node, and the weight of the node. A node’s weight is
a function of the loop depth (see section 5.6.7) of the blocks in which the
variable it represents occurs:

weight(n) = > (LOOP_F ACTOR)%rth(°)

o€occurrences(n)

If a variable is used as an operand to a PhiJoinStmt, the weights of each
occurrence of the operand variable in the predecessors of the PhiJoinStmt
are added to the total weight. There is a similar situation for a PhiCatchStmt.

We want to identify copy statements so that the variables involved in
the copy may be coalesced and allocated to the same local variable. A list
of copies between two nodes in the interference graph is maintained. A
PhiStmt generates a copy between its target and each one of its parameters.
A StoreExpr can generate a copy in one of two ways. If both the left
and right sides of the assignment (store) are variables, then there is a copy
between the two nodes in the interference graph corresponding to the two
variables involved in the copy. However, the StoreExpr may also represent
an iinc instruction. Such a StoreExpr must have an integer target and the
left side of the assignment must be an ArithExpr consisting of a variable
(LocalExpr) and an integer constant that can represented as a short. In
the above situation there is a copy from the target variable to the variable
in the ArithExpr.

Nodes that are related to each other via a copy and do not interfere with
each other can be coalesced. Nodes are coalesced in an order based upon
their weight. For each copy, v < w, the union of the nodes that interfere
with v and the nodes that interfere with w is taken. The following formula
is used to determine the order in which copies are coalesced.

102 CHAPTER 7. CODE GENERATION

weight(w) + weight(v)

size(union)

The process of coalescing w into v involves copying all of the edges
(incoming and outgoing) of w into v and removing w from the interference
graph. Two nodes can only be coalesced if they have the same width. All
of the variable definitions of node w now apply to node v. Finally, if any
other copy involves w, that copy is removed from further consideration.

The final step is to color (i.e. assign local variables to) the nodes in the
interference graph. Nodes are assigned values in InitStmts are considered
to be pre-colored. Nodes that were coalesced with pre-colored nodes are also
considered to be pre-colored. The remaining uncolored nodes are sorted in
decreasing order by weight. Each node in the interference graph is visited.
All of its neighbors are examined to determine the available colors with
which to color the node. The lowest available color is chosen. The number of
colors used is kept track of. Wide variables must be assigned two consecutive
colors. Once every node has been colored, its color number is assigned to
the index of the local variable’s LocalExpr and all of its uses.

7.3 Code Generation

The class bloat .codegen.CodeGenerator generates Java bytecodes from a
control flow graph. However, before actual code generation begins several
additional transformations are be made.

7.3.1 Auxiliary Methods

CodeGenerator has several helper methods for performing common func-
tions. createStore creates a StoreExpr from a Expr source and a VarExpr
destination. createUndefinedStore creates an initialization StoreExpr for
a given VarExpr source. For instance, for an integer VarExpr it will create
a StoreExpr that stores the constant 0 into the VarExpr.

7.3.2 Replacing ¢ Statements

CodeGenerator’sreplacePhis method converts ¢-statements into copy state-
ments and removes them from the control flow graph. Two auxiliary meth-
ods, replaceCatchPhis and replaceJoinPhis do the bulk of the work.

3This formula seems to conflict with the one given on page 38 of Nate’s thesis [Nys98].

7.3. CODE GENERATION 103

replaceCatchPhis replaces PhiCatchStmt’s with copies from each of
its operands to its target at the operand’s definition point. Each block in
the control flow graph that begins an exceptional handler is visited. When
a PhiCatchStmt is encountered, the definition of each of its operands is
noted. If the definition is nested inside a statement, a statement copying
the operand to the PhiCatchStmt’s target is inserted after the defining state-
ment. If the definition is nested inside an expression, the defining expression
is replaced with a StoreExpr whose left-hand side is the target variable and
whose right-hand side is the right-hand side of the defining expression. That
is,

operand = init

becomes
operand = (target = init)

replaceJoinPhis inserts a store of each PhiJoinStmt’s operand variable
into the PhiJoinStmt’s target variable after the operand’s final occurrence.
This final occurrence resides in the block preceding the PhiJoinStmt. The
control flow graph’s blocks are visited in trace order by a bloat.tree.
TreeVisitor. When a PhiJoinStmt is encountered, each of its operands
is visited. If by some chance the target and operand were allocated to the
same local variable, no copy is inserted. Recall that each block ends in
a jump statement. This jump statement may contain an expression that
uses local variables. The copy statement that is inserted for the operand of
the PhiJoinStmt must not redefine any of the local variables used in the
expression in the jump statement. So, the expression in the jump is copied
to a stack variable (i.e. pushed on the stack), the copy of the ¢-operand
to the ¢-target is inserted, and the stack variable is used in place of the
expression in the jump statement.

Lastly, all of the PhiStmt’s are removed from the control flow graph.

7.3.3 Simplifying Control Flow

The various optimizations that BLOAT performs may render some basic
block useless. For instance, a block may consist solely of a jump to another
block. These blocks are useless and can be removed from the control flow
graph. The method simplifyControlFlow removes such blocks.
simplifyControlFlow calls removeEmptyBlocks to remove blocks that
are empty. A block is considered empty if it only contains GotoStmts,

104 CHAPTER 7. CODE GENERATION

JsrStmts, RetStmts, and LabelStmts. Basically, an empty block contains
labels and a jump. If an empty block ends with a GotoStmt, all it does is
jump to a target block. The jump statements that terminate the predeces-
sors of the empty block are modified to jump to the empty block’s successor
instead of the empty block.

There are two interesting cases when an empty block ends in a RetStmt.
Obviously, the empty block is in a subroutine. If the predecessor to the
empty block ends with a JsrStmt, then the entire subroutine is empty.
The JsrStmt is replaced with a jump (GotoStmt) to the block following
the JsrStmt (i.e. the block to where the subroutine would have returned).
The catch targets of the GotoStmt are updated accordingly. All paths (see
section 5.5.1) involving the JsrStmt are removed from the Subroutine.

In the case that the block preceding the RetStmt is a GotoStmt (that
jumps to the empty block), the subroutine is still valid. The GotoStmt is
replaced with a clone of the RetStmt. The catch targets of the RetStmt
clone and the exit block of the Subroutine must be updated appropriately.

If the last statement in the empty block is a JsrStmt, each of the empty
block’s predecessors is visited. If the predecessor ends in a GotoStmt, the
GotoStmt is replaced with a clone of the JstStmt. The control flow graph
and Subroutine called by the JsrStmt are updated appropriately.

After removeEmptyBlocks has been called, simplifyControlFlow ex-
amines each Subroutine in the control flow graph. If there is only one path
through the subroutine (i.e. the subroutine is only called once), then its
corresponding jsr and ret instructions can be replaced with cheaper goto
instructions. So, the subroutine’s entry and exit blocks are examined. The
JumpStmt (a RetStmt) that terminates the exit block is replaced with a
GotoStmt that jumps to the block following the JsrStmt. The JsrStmt
is replaced with a GotoStmt to the entry block of the subroutine. At this
point the subroutine is no longer really a subroutine. So, it is removed from
the list of subroutines that the FlowGraph maintains. Additionally, all of
the AddressStoreStmts that store the return address of the subroutine are
removed from the control flow graph.

7.3.4 Allocating Subroutine Return Addresses

During register allocation it may be possible that the local variable that
stored a subroutine’s return address gets allocated to another variable. In-
stead of worrying about how return address variables conflict with other
variables, return address variables are given unused (“fresh”) local variables.
This is accomplished by the allocReturnAddresses method.

7.3. CODE GENERATION 105

7.3.5 Generating Code

CodeGenerator implements the bloat.tree.TreeVisitor interface. Code
for each kind of node in an expression tree is generated in the visitor methods
implemented by CodeGenerator. bloat.editor.Instructions are added
the bloat.editor.MethodEditor that represents the method for which
code is being generated. It is assumed that the MethodEditor’s clearCode
method has been called before code is generated. Code generation essen-
tially involves breaking down nodes in the method’s control flow graph into
JVM instructions. The visitor visits most nodes in post-order and invokes
the addInstruction method of the MethodEditor.

Postponing Instructions

Code generation performs one optimization. The insertion of instructions
dealing with checks of persistent objects (rc and uc) is postponed until the
last possible moment. Let’s consider a message send x.m(a.f). Both x and
a must be checked for residency. We could generate code like this:

aload x

rc O

aload a

rc O

getfield <A.£f>
invoke <X.m>

However, we would like to generate:

aload x

aload a

rc O

getfield <A.£f>
rc 1

invoke <X.m>

So, when we encounter an RCExpr we look at its parent in the expression
tree. Depending on its parent’s type, the generated rc instruction may be
postponed. This is accomplished by maintaining a mapping between the
parent node and the instruction that is postponed. The visitor method
for the parent will call the genPostponed method to add the postponed
instruction to the MethodEditor (remember that code is generated for a
node’s children first).

106 CHAPTER 7. CODE GENERATION

Visiting Nodes

The following is a list of various types of nodes in the expression tree and a
description of the code that is generated when they are encountered. Along
the way we maintain the current height of the stack. Unless otherwise
specified, it is assumed that the traversal proceeds in post-order. That is,
a node’s children are visited and any postponed instructions are generated
before the code for the node itself is generated.

FlowGraph Before any code is generated a couple of checks are performed on
the control flow graph. First, each Label in a block is visited and it is
ensured that only one label is designated as starting the block. Then
the code for each block is generated. Lastly, each protected region
in the method is examined and bloat.editor.TryCatch objects are
created to represent the protected regions.

ExprStmt If the ExprStmt’s expression is not a StoreExpr and has a non-
void type, then a pop instruction is generated. If the type of the
expression is wide, then a pop2 is generated, else a pop is generated.

GotoStmt A goto instruction whose target is the label of the GotoStmt’s
target is generated.

IfCmpStmt The true and false blocks are considered. If the next block in
the trace is the false block, then the genIfCmpStmt helper method is
called. If the next block in the trace is the true block, the IfCmpStmt
is negated and genIfCmpStmt is called. If neither block is next, gen-
IfCmpStmt is called and a goto the false block is generated.

genIfCmpStmt examines the type of the comparison being performed
by the IfCmpStmt and generates the appropriate opcode: if_acmpeq,
if_acmpne, if_icmpeq, if_icmpne, if_icmpgt, if_icmpge, if_icmplt, or if_icmple,
with the label of the true block as an operand.

IfZeroStmt The process for generating code for an IfZeroStmt is similar to
that of a IfCmpStmt, except that there is an equivalent genIfZeroStmt
method and the generated opcodes are: ifnull, ifnonnull, ifeq, ifne, ifgt,
ifge, iflt, or ifle.

LabelStmt The addLabel method of the MethodEditor is invoked with the
LabelStmt’s label.

MonitorStmt Depending on the kind of the MonitorStmt either a moni-
torenter or monitorexit instruction is generated.

7.3. CODE GENERATION 107

RCExpr If the RCExpr is nested inside an ArrayRefExpr, CallMethodExpr,
or a FieldExpr then the generated rc instruction can be postponed.
The index of the rc depends on the properties of the expression in
which it is nested.

If the RCExpr is not nested inside one of the interesting expressions,
its index is calculated as follows. If the operand of the RCExpr is a
StackExpr, then the index is the current height of the stack minus
one less than the index of the StackExpr. Otherwise, the index is zero
because whatever the operand expression is, its value will be at the
top of the stack.

UCExpr If the UCExpr is nested inside a FieldExpr, the generated aupdate
or supdate instruction is postponed. Otherwise, the instruction is gen-
erated in a manner similar to RCExpr above.

RetStmt Generates a ret instruction with the local variable containing the
return address of the subroutine as its operand.

ReturnExprStmt Depending on the type of the expression being returns it
generates an areturn, ireturn, lreturn, freturn, or dreturn instruction.

ReturnStmt Generates a return instruction.

StoreExpr Ifthe StoreExpr’s parent in the expression tree is not an ExprStmt,
then the StoreExpr has a value. If both the left-hand and right-hand
sides of the StoreExpr are the same variable (LocalExpr with the same
index) and the StoreExpr does not have a value, then the StoreExpr
is uninteresting and no code is generated.

If the left-hand side is a variable and the right-hand side is of integral
type, then there is the potential that the StoreExpr represents an
increment. An iinc instruction is generated when it can be discerned
that the right-hand side consists of an ArithExpr with one integer
constant (ConstantExpr) operand that can be represented as a short
and the same local variable (LocalExpr) as the left-hand side.

If the StoreExpr has a value, we can use the dup instructions depend-
ing on the type of the left-hand side of the StoreExpr. The generated
instructions are summarized in Table 7.1.

AddressStoreStmt Generates an astore instruction with an argument of the
return address of the Subroutine associated with the AddressStoreStmt.

108 CHAPTER 7. CODE GENERATION

JsrStmt Generates a jsr instruction. If the block that is executed after
the JsrStmt does not come immediately after it, a goto instruction is
generated that jumps to the appropriate block.

SwitchStmt Generates a switch instruction and constructs a bloat .editor.
Switch object to represent the mapping between target values and
their labels.

StackManipStmt Because all of the children of a StackManipStmt are stack
variables, they are not visited. Depending on the kind of StackManipStmt
one of the following instructions is generated: swap, dup, dupxl,
dupx2, dup2, dup2_x1, or dup2_x2.

ThrowStmt Generates a athrow instruction.
SCStmt Generates a aswizzle instruction.
SRStmt Generates a aswrange instruction.

ArithExpr Generates one of the arithmetic instructions: iadd, ladd, fadd,
dadd, iand, land, idiv, Idiv, fdiv, ddiv, imul, Imul, fmul, dmul, ior, lor,
irem, Irem, frem, drem, isub, Isub, fsub, dsub, ixor, Ixor, lcmp, fcmpl,
dcmpl, fcmpg, or dempg.

ArrayLengthExpr Generates an arraylength instruction.

ArrayRefExpr If the ArrayRefExpr defines a variable one of the store in-
structions is generated: aastore, bastore, castore, sastore, iastore, las-
tore, fastore, or dastore. If the ArrayRefExpr does not define a variable,
the one of the load instructions is generated: aaload, baload, caload,
saload, iaload, laload, faload, or daload.

CallMethodExpr Generates invokevirtual, invokespecial, or invokeinterface de-
pending on the kind of the CallMethodExpr. The argument to the
instruction is the CallMethodExpr’s method, an instance of bloat.
editor.MemberRef.

CastExpr If the CastExpr has a reference type, then a checkcast instruction
is generated. Otherwise, one of the 22y instructions is generated.

ConstantExpr Generates an ldc instruction.

FieldExpr If the FieldExpr is a definition, then a putfield instruction is
generated; else, a getfield instruction is generated. The instruction’s
operand is the name of the field reference by the FieldExpr.

7.3. CODE GENERATION 109

Left-hand Side | Stack Before Stack After Instruction
ArrayRefExpr | array index rhs | rhs array index rhs | dupx2 or dup2_x2
FieldExpr object rhs rhs object rhs dup_x1 or dup2_x1
Other rhs rhs rhs dup or dup2

Table 7.1: Generation of dup instructions from StoreExprs

Instance0fExpr Generates an instanceof instruction.

LocalExpr If the LocalExpr is a definition, then one of the store instruc-
tions (astore, istore, fstore, Istore, or dstore) is generated. Otherwise,
one of the load instructions (aload, iload, lload, fload, or dload) is gen-
erated.

NegExpr Depending on the type of the NegExpr generates ineg, fneg, Ineg,
or dneg.

NewArrayExpr Generates a newarray instruction with an operand of the el-
ement type of the NewArrayExpr.

NewExpr Generates a new instruction with an operand of the object type
(bloat.editor.Type) of the NewExpr.

NewMultiArrayExpr Generates a multianewarray instruction and a bloat.
editor.MultiArrayOperand object to represent the operand.

ReturnAddressExpr Does nothing. Hrm.

ShiftExpr Generates a ishl, ishr, iushr, Ishl, Ishr, or lushr depending on the
properties of the ShiftExpr.

DefExpr Nothing interesting.
CatchExpr Nothing interesting.
StackExpr Nothing interesting.

StaticFieldExpr If the StaticFieldExpr is a definition, a putstatic in-
struction is generated, else a getstatic instruction is generated.

ZeroCheckExpr Nothing interesting.

110 CHAPTER 7. CODE GENERATION

7.4 Summary

After optimizations have been performed on a method’s control flow graph,
new bytecodes for the method are generated. To make efficient use of Java
Virtual Machine local variables, local variables in the method are treated
as “registers” and are allocated to JVM local variables. SSA ¢-statements
in the control flow graph are converted into copies and empty blocks are
removed. Finally, the expression trees in the control flow graph are visited
and bytecodes are generated.

Part 11

Optimizing Java Classes

111

Chapter 8

Program Transformations

The bloat.trans package contains a number of classes that perform opti-
mizations on control flow graphs. These optimizations include dead code
elimination, value folding, type inferencing, SSA-based partial redundancy
elimination, expression propagation, persistent check elimination, and peep-
hole optimizations. This chapter focuses on array initialization compaction,
dead code elimination, value folding, expression propagation, persistent
check elimination, and peephole optimizations. Chapter 9 covers typed-
based alias analysis and chapter 10 describes SSA-based partial redundancy
elimination.

8.1 Array Initialization Compaction

Some Java compilers generate straight-line code for initializing arrays. Ba-
sically there is a iconst, bipush, iastore, and a dup instruction generated for
each element of the array (in this case, an array of integers). As a result,
classes that have large, initialized arrays can have unnecessarily large class-
files. Array initialization compaction translates the initialization code into
a loop that loads elements of an array from a string in the class’s constant
pool. Note that we only compact arrays of bytes, shorts, ints, chars, and
booleans.

Array initializer compaction is performed by bloat.trans.Compact-
ArrayInitializer. The work is divided between the transform method
and the private fillArray method. transform takes a bloat.editor.
MethodEditor (see section 3.3.2), extracts its code and scans it for an array
initialization. If an array initialization is found, it calls fillArray to create
a string in the constant pool, fill it with the data in the array, remove the

113

114 CHAPTER 8. PROGRAM TRANSFORMATIONS

old initialization code, and insert new code.

The following guidelines are used to determine what code constitutes an
array initialization. The entire process can be thought of as a finite state
machine.

1. When a load (constant) instruction is encountered, its operand is usu-
ally the size of the array.

2. When a “new array” instruction is encountered, its operand is used
to determine the type of the array (see bloat.editor.Type section
3.2.1). Note that we only compact “integral” types: integers, shorts,
characters, and booleans. At this point, the buffer to hold the data in
the array is created.

3. A dup instruction is expected to occur next. If it does not, start over
again.

4. The next load will load an index into the array. The data at the index
will be the operand of the following load.

5. An array store instruction causes the value to stored into the buffer.

CompactArraylnitialize’THRESHOLD

This process repeats until an astore, aastore, putstatic, or putfield opcode
is encountered, signifying the end of an array initialization. If a minimum
number of elements have been read (THRESHOLD), the fillArray method is
called to create the new UTFS string containing the array, remove the old
code, and insert new code.

fillArray begins by creating a character array to hold the data in char
form!. A UTFS8 string may be no longer than 64K bytes. Just to be safe,
the compactor creates UTFS8 strings of 32K bytes. Multiple strings may be
necessary.

The old array initialization code is removed from the method. However,
the newarray instruction remains so that the item on the top of the stack is
the array being initialized.

Inserting new code to initialize the array differs depending on the data
type of the array being initialized. If it is a char array, then String.getChars ()
method is invoked to copy the contents of the UTF8 string (represented as
a String object) into an array of char.

!Remember that character and short data is 16-bits wide, byte and boolean data are
8-bits wide, and integer data is 32-bits wide and is stored in big-endian format.

8.2. DEAD CODE ELIMINATION 115

Loading non-character data from the UTF8 string requires a little more
work. First of all, the UTF8 string is copied into a local array of char.
Then a loop is inserted to load each element of the array being initialized
from the character array. Note that an int must be assembled from two
chars and each char holds two byte/boolean.

8.2 Dead Code Elimination

Code that does not contribute to the final output of a program is considered
to be “dead” code. BLOAT performs SSA-based dead code elimination as
described in [CFR*91]. There are three conditions under which a statement
is considered to be live?:

1. The statement affects program output. For BLOAT’s purposes this re-
quirement extends beyond I/O or calling a routine that has side effects.
Statements that may throw exceptions and synchronized statements
are also considered to be live.

2. The statement is an assignment statement and its target is used in a
live statement.

3. The statement is a conditional branch and one or more live statements
are control dependent on the conditional branch’s execution.

BLOAT implements dead code elimination with the bloat.trans.Dead-
CodeElimination class. The transform method does the work of marking
nodes in the expression trees of a FlowGraph’s basic blocks as being dead
or live. It uses a worklist mechanism similar to the algorithm presented in
[CFR191]

Initially, all nodes in the expression tree are marked as DEAD. A Node’s
key is used to keep track of its liveness. A number of kinds of statements
and expressions are marked as being live (pre-live). Several of them may
throw exceptions: MonitorStmt, ZeroCheckExpr, CastExpr, ArithExpr
using division (DivideByZeroException), ArrayRefExpr, and FieldExpr.
Several of them may change memory: NewMultiArrayExpr, NewArrayExpr,
SRStmt, SCStmt, RCExpr, UCExpr, NewExpr, and a StoreExpr whose target
is not a local variable (LocalExpr). All InitStmts are considered to be live
so that formal parameters are correctly initialized during register coloring

2Note that this concept of liveness is slightly different than the liveness used in register
allocation (see section section 7.1).

116 CHAPTER 8. PROGRAM TRANSFORMATIONS

(see section 7.2). Statements that branch are pre-live: JsrStmt, RetStmt,
CallStaticExpr, CallMethodExpr, ThrowStmt, SwitchStmt, IfStmt, Go-
toStmt, ReturnStmt, and ReturnExprStmt. Statements that change the
stack are also pre-live: StackExpr that are not contained in PhiStmts,
CatchExpr because the stack is cleared when an exception occurs, and
StackManipStmt.

Each expression tree Node is marked as being live with the private
markLive method. If a StoreExpr is being marked as live, its target and
right-hand side expression are also marked as being live. Its target and RHS
are also added to the worklist. Note that only VarExprs are added to the
worklist. If the node being marked live resides within an ExprStmt (that
is, its parent is an ExprStmt), then the ExprStmt is live. The node is then
visited by a TreeVisitor that marks the node’s children as being live. If
the child is a StoreExpr whose target is a local variable, the target is not
immediately made live. If the target is used again in a live expression, it
will get marked as live then.

The VarExprs in the worklist are then examined. Each of the DefExpr
that define the VarExprs is marked as being live. Once every node that is
live has been marked as such, the removal can begin. First, dead stores are
removed. If the left-hand side of a StoreExpr is dead and its right-hand
side is live, then all occurrences of the StoreExpr are simply replaced with
the right-hand side.

In some cases a live expression may be nested inside an expression that
is dead. All occurrences of the live expression are replaced by a new stack
variable (StackExpr). An ExprStmt evaluating the live expression is placed
before the statement containing the live expression?.

Finally, statements that are dead are removed from the tree. LabelStmts
and JumpStmts are never removed.

8.2.1 An Example of Dead Code Elimination

The below code gives a very simple example of dead code elimination.

int £ {
int x =1, y = 2;
x =x + 3

e

y =4
return(y);

3Nate refers to this as “Pull out live expressions from their dead parents.” Before he
went into computer science, Nate used to write greeting cards. Eeep.

8.3. VALUE NUMBERING 117

I abel _13 | abel _13

\ \

I abel _14
INT Lr0_0 I'abel _14

goto label _0 caught by []
| abel _12

INT Lro_o
goto abel _0 caught by []
I abel _12

Taber 0
eval (Lil_1:=1)

1 abel _0

eval (Li1d:= (Lill+3) eval (Li2.5:=4)
eval (Li2.5:=4) return Li2_5 caught by []

return Li2_5 caught by (] /

I abel _15 I abel _15

Before DCE After DCE

Figure 8.1: An Example of Dead Code Elimination

This method’s control flow graphs both before and after dead code elim-
ination are given in Figure 8.1. Notice that the code for calculating the dead
program variable, x (store in Lil), is removed from block 0.

8.3 Value Numbering

Value numbering associates a number with each expression in a program
such that if two expressions have the same number, they have the same
value. Therefore, if two expressions have the same value number, one of them
may be eliminated. Traditional value numbering techniques used a hashing
method to associate a number with each expression. The value numbering
method that BLOAT uses (see [CS95] and [Sim96]) associates expressions
based on the concept of congruence of variables. Two variables are congruent
if their definitions have identical operators and congruent operands (equal
constant values are always congruent). For instance, a — b+ 3 is congruent
to ¢ =& 3+ d if b is congruent to d.

8.3.1 The SSA Graph

A control flow graph’s SSA graph (also called the value graph ([Muc97]))
represents how expressions in the CFG are related to each other. The SSA
graph is a directed graph whose nodes are expressions (anything that has

118 CHAPTER 8. PROGRAM TRANSFORMATIONS

a1 <— 2
c1L 4+ 2
b1 a1 +14
a1 <1
a2
c+ 2
b—a+4
i1 is(—¢(i1,i2)
while (¢ < 5) do is <5

t—1+1
d<c+14 / \

2+ 1i3+1 di +—c1+4
(a) Code (b) CFG in SSA Form

Figure 8.2: Code and CFG for Figure 8.3

A

Its SSA Graph
Figure 8.3: The SSA Graph

a value). Edges in the graph represent which expressions are operands of
another. Assignments are represented by labeling a node with the variable
into which an expression is assigned. Let us consider figure 8.3. The as-
signment a1 < 2 creates a 2 node with the label a;. The expression a; + 4
creates a + node with outgoing edges to the a; node and the 4 node. Notice
that ¢-statements are also represented in the SSA graph. In figure 8.3 the
dependencies between the SSA variables for 7 result in a loop in the SSA
graph. Notice also that variables b; and d; are congruent. Two nodes in
the SSA graph are considered to be congruent if either they are the same
node, they represent constants and their contents are equal, or they have
the same operators and their operands are congruent.

BLOAT’s implementation of value numbering works on the strongly con-
nected components (SCCs) of the SSA graph [CS95]. The SSA graph rep-
resents how expressions in the control flow graph are “nested”. If an SSA
graph does not contain any cycles (SCCs), then a reverse post-order (visit a
node’s children right-to-left, before visiting the node) traversal of the SSA

8.3. VALUE NUMBERING 119

while (there exists and unvisited node, n) do
DFS(n)
procedure DFS(node) begin
node. DF Snum < nextDF Sum + +
node.visited — TRUE
node.low < node.DF Snum
PUSH (node)
for each operand o of node do
if (not(o).visited) then
DFS(o)
node.low <— MIN (node.low, o.low)
if (0.DF Snum < node.DF Snum and o € stack) then
node.low < MIN(o.DF Snum, node.low)
if (node.low == node.DF Snum) then
SCC «+ 0
do
z < POP()
SCC + SCC U {z}
while (z # node)
ProcessSCC(SCC)

Figure 8.4: Tarjan’s Algorithm for Finding SCCs

graph would be sufficient to value number. Cycles complicate things. So,
each SCC is identified and treated as a single node. Thus, when we visit a
node in a reverse post-order traversal, we know that all of the node’s children
(operands) have already been visited.

Tarjan’s algorithm (figure 8.4) is used to find the SCCs in the flow graph.
Once an SCC is found, its components are value numbered using the algo-
rithm in figure 8.5. The SCC-based value numbering algorithm maintains
two hashtables of value numbers. The wvalid table contains value numbers
that are known to be correct. If an SCC contains only one component, then
the valid table is used to compute the component’s value number. The SCCs
with multiple components are visited in reverse postorder with respect to
the CFG using the optimistic table. Iterations over the components in
the SCC effect their value numbers and refine the optimistic table. Once
the optimistic table is refined, the components of the SCC are value num-
bered using the valid table. Along the way the components of the SCC
(expressions) are simplified using algebraic identities and constant folding.
¢-statements may be simplified if all of their operands are equal.

120 CHAPTER 8. PROGRAM TRANSFORMATIONS

procedure ProcessSCC(SCC) begin
if (SCC has a single member n) then
Valnum(n, valid)
else
do
changed < FALSE
for each n € SCC in reverse postorder do
Valnum(n, optimistic)
while (changed)
for each n € SCC in reverse postorder do
Valnum(n, valid)

Figure 8.5: SCC-Based Value Numbering

8.3.2 Implementation
SSA Graph

BLOAT’s implementation of value numbering follows the algorithms de-
scribed, but it’s a little screwy. The SSA graph is implemented by bloat.
ssa.SSAGraph. An SSAGraph visits the expression trees in a FlowGraph and
determines which nodes are equivalent to each other. A CheckExpr and the
expression it checks are equivalent. A PhiStmt and its target are equivalent.
If a VarExpr does not define a variable, then the VarExpr and its definition
are equivalent. StackManipStmts are visited such that the corresponding
stack expressions before and after the manipulation are equivalent. Equiv-
alent nodes are stored together in Sets.

The children method of SSAGraph constructs a list of a node’s children
in the SSA graph (the Node’s operands). If the Node is a StoreExpr, then
its RHS is added to the list of children. If the LHS is a VarExpr, then
it is equivalent to the Node and is therefore not a child. If the Node is a
PhiStmt, the its operands are its children. Otherwise the Node’s “children”
(visitChildren method) are used.

So far, things have been okay. The implementation takes a left turn
towards Bizarro World in the visitComponents method. Okay, the algo-
rithm in figure 8.4 is implemented in visitComponents. The SCC-based
value numbering algorithm (figure 8.5) is implemented in bloat.trans.
ValueNumbering which creates an anonymous implementation of the bloat.
ssa.ComponentVisitor interface which contains one method, visitComponent,

8.3. VALUE NUMBERING 121

that works on a list of components*. Whatever!

visitComponents in SSAGraph computes the strongly connected com-
ponents of the SSA graph and invokes the ComponentVisitor on each one.
First each Node in the CFG is assigned a global (that is, with respect to all
blocks) depth first search number. Then, each Block is visited in reverse
post-order. If a Node has not already been visited, then it is assigned the
next depth-first number and is pushed onto a stack. Each Node that it is
equivalent to is also assigned that same depth-first number. Each child of
the node in the SSA graph is then recursively visited.

Once the children have been visited, if the “low” depth-first number is
equal to the current node’s depth-first number, then we have a strongly
connected component. So, we’ve visited all of the children and now we’re
back to where we started. Nodes are popped off of the stack until the current
node is reached. The popped nodes constitute an SCC. The components in
the SCC are sorted to ensure that they are still in reverse post-order. Finally,
the ComponentVisitor is invoked on the strongly connected component.

If the node in question has already been visited (that is, it already has
a depth-first number), then the edge between it and its parent node must
form a loop. It is left as an exercise to the reader to try to figure out the
correlation between Tarjan’s algorithm and the current implementation. I
ain’t doing it.

Auxiliary Classes

Before we dive head first into value numbering, there are a couple of auxiliary
classes that need to be discussed. While value numbering we will need to
know which expressions could have side effects and what kinds of side effects
those are. This is accomplished by bloat.trans.SideEffectsChecker.
SideEffectsChecker implements the TreeVisitor interface. When an ex-
pression tree Node is visited by a SideEffectsChecker, it compiles a bit
vector showing the kinds of side effects it may have.

A CatchExpr, StackExpr, or StackManipStmt effects the stack. A
ZeroCheckExpr, NewMultiArrayExpr, NewArrayExpr, CastExpr, Array-
LengthExpr, ArrayRefExpr, CallStaticExpr, CallMethodExpr, or Mon-
itorStmt may throw an exception. A CallStaticExpr or CallMethodExpr
involve invoking a method. MonitorStmts causes thread synchronizations.
A NewMultiArrayExpr, NewArrayExpr, or NewExpr causes memory to be
allocated. RCExprs and UCExprs cause residency and update checks, respec-
tively. A StoreExpr, a LocalExpr, StackExpr, ArrayRefExpr, FieldExpr,

“I believe Dr. Comer would refer to this solution as “elegant”.

122 CHAPTER 8. PROGRAM TRANSFORMATIONS

or StaticFieldExpr that defines a variable all involve a store to memory.
An ArrayRefExpr and a non-final FieldExpr cause an alias. FieldExprs
and StaticFieldExpr that are volatile also have side effects.

Along the way we will need to be able to differentiate between Nodes in
expression trees. The bloat.trans.NodeComparator class helps us do this.
Its equals method compares two Nodes for equality. It also has a hashCode
method for determining a unique number for each kind of Node. Nodes that
are composed of other objects (for example, an IfCmpStmt is made up of a
comparison and two Blocks representing the targets) have hash codes that
are based on the hash codes of their composites. Most kinds of Nodes are
equivalent to each other (for example, every RetStmt always has the same
hash code). However, method calls are never considered equal.

The bloat.trans.ValueFolder class is used to determine whether or
not a given Node can be replaced with another Node (usually a ConstantExpr).
It is a TreeVisitor that recognizes things like algebraic identities and re-
dundant checks. The ValueFolder may or may not actually replace the Node
in the CFG with its simplified version. For instance, during value number-
ing no Nodes are replaced, but during value folding (see section 8.4) they
are. ValueFolder contains a mapping between value numbers and their con-
stant (ConstantExpr) value, if any. It also keeps track of which value num-
bers correspond to the allocation of new objects (NewExpr, NewArrayExpr,
NewMultiArrayExpr). The following summarizes the simplifications that
can take place.

LocalExpr If the LocalExpr resides within a InitStmt and it is the first
target in the InitStmt, then it represents the this pointer.

PhiJoinStmt A PhiJoinStmt may be eliminated if it is meaningless (all
of its operands have the same value number) or it is redundant (its
value is already computed by another PhiJoinStmt). Each operand is
examined to make sure it has no side effects.

StoreExpr If the expression being stored resides within a CheckExpr, the
CheckExpr is brought outside of the StoreExpr to facilitate copy prop-
agation. If the StoreExpr stores into a local variable (LocalExpr),
then determine whether or not the value number of the expression
being stored has been mapped to a constant (ConstantExpr). If so,
replace the expression with constant.

NewMultiArrayExpr/NewArrayExpr /NewExpr Keep track of the value num-
bers of expressions that create new objects.

8.3. VALUE NUMBERING 123

RCExpr If the expression being checked is itself an RCExpr, then the outer
one is redundant. If the expression being checked is the this pointer
or if the expression results from an allocation expression, we know that
the expression will always be resident and the RCExpr can be removed.

ZeroCheckExpr If the expression being checked is a ZeroCheckExpr, then
the outer one is redundant and can be removed. The this pointer
and objects that were created by allocation expressions will never be
null, so the ZeroCheckExpr can be removed. If the expression being
checked evaluates to a non-zero constant, then the ZeroCheckExpr can
be removed.

UCExpr If the expression being checked is also an UCExpr, then it is redun-
dant and can be removed.

ArithExpr By examining the ArithExpr operator and the operands we at-
tempt to take advantage of several algebraic properties such as identity
and associativity. Of course, if both operands evaluate to constants,
we can calculate the result and remove the ArithExpr.

CastExpr In the special cases when the empty string, ¢¢’?, is cast to a
String or null is cast to some object type, the CastExpr can be
eliminated.

NegExpr Ifthe expression being negated evaluates to a constant, the NegExpr
can be replaced with the negated ConstExpr.

ShiftExpr If the ShiftExpr shifts zero bits (expression being shifted doesn’t
change) or shifts zero itself (always zero), we can replace it with the
appropriate expression.

IfZeroStmt If the expression being tested evaluates to a constant, the
IfZeroStmt can be replaced with a GotoStmt that always jumps to
the appropriate target.

IfCmpStmt If the expressions being compared evaluate to constants then we
can replace the IfCmpStmt with a GotoStmt. If one of the expression
being compared evaluates to zero, we can replace the IfCmpStmt with
an IfZeroStmt.

SwitchStmt If the index of the SwitchStmt evaluates to a constant, then
the SwitchStmt can be replaced with a GotoStmt to the appropriate
target.

124 CHAPTER 8. PROGRAM TRANSFORMATIONS

Numbering Expressions

SSC-based value numbering is implemented in the static transform method
of bloat.trans.ValueNumbering. It implements the algorithm found in
figure 8.5. After creating the SSAGraph for the FlowGraph it creates an
anonymous implementation of ComponentVisitor to do the work of the
algorithm. It has two hash tables, the optimistic table and the valid table.
Both tables are global to the algorithm. It initializes the value number of
each component of the SCC to -1. If the SCC has only one component,
then the private valnum method is invoked for the component using the
optimistic table.

BLOAT implements the valid and optimistic tables as HashMaps that
map Nodes to Tuples. Each Tuple consists of a Node and an integer hash
code based on the hash code of the Node (see NodeComparator, section 8.3.2)
and the number of children the node has in the SSA graph.

Tuple provides an equals method to determine if two Tuples are equal
with respect to their value numbers. If both Tuples’ Nodes are MemRefs, then
the Tuples are always considered to be unequal. If the Nodes are not equal
when compared using a NodeComparator, then the Tuples are unequal. If
the Nodes have a different number of children in the SSA graph (operands),
they are unequal. If the Nodes children in the SSA graph have different value
numbers, the Tuples are unequal. If the Nodes are PhiStmts, the order of
children does not matter. So, if corresponding children of the two Nodes
have the same value numbers, the Tuples are considered to be equal.

If a Tuple has not already been created for the Node being value num-
bered, valnum simplifies the Node by calling the simplify method and cre-
ates a Tuple for the simplified Node to which the original Node is mapped.
The table (either the optimistic or the valid depending on how valnum was
called) is searched for the Node corresponding to the Tuple. If the Tuple
is mapped to a Node, that Node’s value number is used. Otherwise, a new
value number is used. Finally, each of the Nodes that the Node is question
is equivalent to (in the SSA graph) is examined. If the equivalent Node has
a value number that is different from the value number of the Node in ques-
tion, the equivalent Node is assigned the new value number and the contents
of the table is therefore changed.

The rest of the ComponentVisitor in the transform method pretty
much follows the algorithm in figure 8.5. If the SCC has more than one
component, valnum is invoked for each component Node in reverse post-order
using the optimistic table. This process is repeated until the optimistic table
does not change (that is, no Node equivalent to the component has its value

8.4. VALUE FOLDING 125

number changed). Finally, valnum is invoked on each component using the
valid table.

8.4 Value Folding

Once the value numbers for the Nodes in the control flow graph have been
calculated, the information gathered by a ValueFolder can be used to elim-
inate redundant Nodes and to propagate constants through the CFG. This
elimination is performed by bloat.trans.ValueFolding.

The transform method of ValueFolding uses a ComponentVisitor to
visit each component of the SCCs in the FlowGraph’s SSA graph. This
visitor creates a mapping between a component Node and the Node to which
it can be folded. The private fold method is invoked on each component
until the mapping does not change.

fold searches the mapping for the Node to which the SSC node can be
folded. If the folded node has no parent or has not been assigned a value
number, it cannot be folded. If the folded Node is a ConstantExpr and its
value number was mapped to a different ConstantExpr (or nothing at all),
the mapping between value numbers and their ConstantExprs maintained in
the ValueFolder is updated. If the folded node is a non-constant Expr that
was mapped to a constant, replace all occurrences of the folded Node with a
clone of the ConstantExpr. Map the component Node to the ConstantExpr.
Note that if the folded Node resides inside a PhiCatchStmt, its value is not
replaced. Finally, if the component Node is not mapped to any Node, a
ValueFolder is used to fold the component Node. If the component Node is
folded, the mapping is updated appropriately.

Back in transform once all of the strongly connected components have
been folded, removeUnreachable is called on the FlowGraph and that’s it.

8.5 Expression Propagation

Expression propagation performs constant and copy propagation. Constant
propagation removes unnecessary assignments by replacing variables that
are assigned constant values with those constant values. For example, given
a1 < 4, all uses of a1 are replaced with 4 and a; and a1 < 4 are removed.
Copy propagation eliminates unnecessary assignments of variables to other
variables. For instance, given a; < b, all uses of a; with b; are replaced
and a; < by is removed.

126 CHAPTER 8. PROGRAM TRANSFORMATIONS

Expression propagation is implemented by the transform method of
bloat.trans.ExprPropagation. transform, in turn, invokes the private
propagate method until no more expression can be propagated (i.e. the
control flow graph does not change).

propagate examines each statement in the control flow graph. If a
StoreExpr that stores into a local variable (LocalExpr) is encountered,
then there is a possibility that expression propagation can take place. If the
right hand side of the StoreExpr is also a StoreExpr, then we have a nested
store:

L := (M :=E)

If M is also a local variable (LocalExpr), then all uses of M can be re-
placed with L and L := (M := E) can be replaced by L := E. The private
propExpr performs the propagating. If the right hand side of the StoreExpr
is a LeafExpr (a local variable or a constant), then all uses of the left hand
side can be replaced by the right hand side and the StoreExpr can be re-
moved.

PhiStmts may also be candidates for expression propagation. In the case
that all of a PhiStmt’s operands are the same (that is, they are all the same
local variable or they are all the same constant value), the target of the
PhiStmt may be replaced by any of the operands (they are all the same).

propExpr does the work of propagating one expression (a local variable)
to the uses of another. If the expression being replaced is a local variable that
is used as an operand to a PhiStmt, no use of that variable can be replaced.
Otherwise, all uses are replaced. If the expression being replaced is not a
local variable, then all uses of it that are not operands of a PhiCatchStmt are
replaced. If all of the uses of an expression are replaced, propExpr returns
true.

8.5.1 An Example of Expression Propagation

The below method is a rather contrived example of expression propagation.

int f(boolean b) {
int x, y, z;
x = 1;
if (b)
y=1
else

y = x5

8.6. ELIMINATING PERSISTENT CHECKS 127

zZ =X +y;
return(z);

}

The control flow graph in SSA form for this method is given in Figure 8.6.
Note that the value of program variable y (Li3) will be the same regardless
of which branch of the if statement is taken. By propagating the constant
value of x (Li2), both of the operands of the ¢-statement for Li3 in block
13 will be 1. Thus, the value of Li3_17 defined by the ¢-statement can be
propagated to its use in the eval in block 13. The constant value of Li2 is
also propagated to that eval. After expression propagation block 13 looks
like this:

<block label_13 hdr=label_22>

label_13

Lil_29 := Phi(label_6=Lil_1, label_11=0)
eval (Li4_8 := (1 + 1))

return Li4_8 caught by []

The ¢-statement for Lil (program variable b) remains, but note that its
second operand has a value of 0. Expression propagation does a good job
of eliminating dead code. The evals in blocks 0, 6, and 11 as well as the
¢-statement for Li3 in block 13 are removed from the control flow graph.

8.6 Eliminating Persistent Checks

BLOAT was designed to work with a Java Virtual Machine that interacts
with a store of persistent objects that has a cache of objects in volatile mem-
ory. Two important operations on persistent objects are residency checks
and update checks. A residency check is an explicit instruction that ensures
that the object at a given offset into the stack is resident in the object cache.
An update check marks an object at a given offset in the stack as being “up-
dated”. An updated object must be written back to the stable store upon
eviction from the cache.

BLOAT represents residency checks by bloat .tree.RCExpr and update
checks by bloat.tree.UCExpr. Each performs a check on some other ex-
pression. A residency check is redundant when it can be proven that the
object it checks is always resident. Examples of values that are always resi-
dent are the this pointer and a value that results from a new statement in
that method.

128

CHAPTER 8. PROGRAM TRANSFORMATIONS

| abel _22

INIT LrO_0 Lil 1
goto | abel _0 caught by []

| abel _23

| abel _21

ifO (Lil_1 == 0) then <block |abel _11 hdr=l abel _22> el se <bl ock | abel _6 hdr=I abel _22> caught by []

| abel _0
eval (Li2_2 :=1)

| abel _6
eval (Li3_10 := 1)
goto |abel _13 caught by []

| abel _11
eval (Li1_11 := 0)
eval (Li3_5:=Li2.2)

goto | abel _13 caught by []

Figure 8.6:

Li1.26 :
Li3_17 :
eval (Li4_8

Tabel_13
Phi (1 abel _6=Li1_1, |abel _11=Li1_11)
Phi (1 abel _6=Li 3_10, |abel _11=Li 3_5)
:= (Li2_2 + Li3_17))
return Li4_8 caught by []

| abel _24
Li1_29 := Phi(label _22=Li 1_undef, |abel _13=Li1_26
Li2_23 := Phi (I abel _22=Li 2_undef, |abel _13=Li2_2)
Li 3_20 := Phi(label _22=Li 3_undef, |abel _13=Li3_17

An Example of Expression Propagation

8.7. PEEPHOLE OPTIMIZATIONS 129

The class bloat .trans.PersistentCheckEliminationexamines the blocks
in a control flow graph and removes persistent checks that are redundant.
It eliminates checks in a manner similar to that of value folding (see section
8.3.2, page 122). The private search method does most of the work. The al-
gorithm uses a bit vector for each type of check (RC, AUPDATE, and SUPDATE)
to keep track of the value numbers on which checks have been performed. A
pre-order traversal of the dominator tree of basic blocks is made. The nodes
in each block’s expression tree are visited in depth-first order.

When an expression that creates an object (NewArrayExpr, NewMulti-
ArrayExpr, or NewExpr) is encountered, its value number is marked as being
“seen” with respect to a residency check. When an InitStmt is encountered,
the value number for the this pointer (the target of the first initialization
in the InitStmt) is computed and is marked as being “seen” with respect
to a residency check. When an RCExpr that checks an expression with a
value number that has been “seen”, the RCExpr may be redundant. If the
expression being checked has no aliasing side effects (see section 8.3.2), then
the RCExpr is replaced with the expression that it checks.

We can remove UCExprs that check expressions that have already been
updated by another UCExpr. When an UCExpr is encountered®, we mark the
value number of the expression being checked as being “seen”. If some later
UCExpr checks an expression with a value number that has been “seen”,
that UCExpr is redundant and is removed provided that it does not have any
aliasing side effects.

8.7 Peephole Optimizations

Peephole optimizations consider a “window” of several consecutive instruc-

tions and look for places where particular characteristics of the instruction
set may be exploited. For instance, a push instruction followed by a pop
instruction is a useless operation. Peephole optimizations will recognize this
fact and remove both instructions.

BLOAT performs peephole optimizations on Java bytecodes using the
bloat.trans.Peephole class. Since peephole optimizations work on the
bytecodes themselves, it is assumed that a method’s control flow graph has
already been converted back into bytecodes (see section 7.3). At this point,
BLOAT operates on a method’s bloat.editor.MethodEditor (see section
3.3.2).

SRemember that we perform a depth-first traversal of the expression tree. Children
are visited first.

130 CHAPTER 8. PROGRAM TRANSFORMATIONS

Peephole’s transform method performs peephole optimizations and then
removes any unreachable code from the method. The method’s code (bloat.
editor.Instructions and bloat.editor.Labels) is visited in reverse so
that redundant loads and stores may be eliminated in one pass. When an
instruction that changes control flow (a goto) is encountered, some optimiza-
tions are performed. If the instruction that follows the goto is the target of
the goto, the goto is useless and can be removed. Instructions that occur
after the goto, but before a Label that starts a block, will never be executed
and can be removed®.

Then the peephole optimizations occur. Each pair of two consecutive
Instructions is sent to the private filter method. filter looks for pat-
terns of instructions that can be optimized. An instruction that pushes
something onto the stack (ldc, zload, or dup) followed by a pop is a use-
less operation and both instructions can be removed. A load followed by
a store to the same location is useless. A store instruction followed by a
return is useless because all local variables are reset upon the return, so the
store can be removed. Algebraic identities can be exploited. For example,
a negation (ineg) followed by an add (iadd) can be replaced with a subtract
(isub). Conditional instructions may be replaced by less expensive counter-
parts. For instance, an Idc 0 followed by an if_icmpeq can be replaced with
an ifeq. Two consecutive stores to the same local variable can be replaced
with a pop and a store. The result of the peephole optimizations (i.e. the
new instruction(s)) are represented by an instance of the private Filter
class. A Filter consists of an array of zero, one, or two Instructions.

If filter was successful in optimizing consecutive instructions, transform
removes the old instructions and inserts the new ones. One last peephole
optimization replaces jump instructions whose targets are themselves jumps
(jumps to a jump) with the the target jump, thus removing the redundant
jump. This is performed for both goto and switch instructions.

The final phase of the peephole optimizations is to remove unreachable
code by invoking the removeUnreachable method. removeUnreachable
makes a depth-first traversal of the instructions. It maintains a worklist of
Labels that begin basic blocks. It also maintains a set of Labels that begin
blocks whose code is known to be reachable. The first block in the method
as well as all blocks that begin exception handlers (we must be conservative
and assume they will be executed) are always reachable. The instructions
in each of the reachable blocks is visited. When an instruction that jumps
to another block is encountered, the label of the target block is added to

51 think this assumes that code was generated in trace order

8.8. SUMMARY 131

the worklist. The code is iterated over one final time to remove unreachable
code. All instructions that occur after a label that has not been marked as
reachable by the above process are unreachable and are removed from the
method.

8.8 Summary

BLOAT performs a number of optimizations on a Java method. Array
initialization compaction replaces long sequences of bytecodes used for ini-
tializes arrays of integral types, with a loop that initializes arrays from a
string stored in the constant pool. Dead code elimination takes advantage
of SSA form to remove operations that do not contribute to the output of the
method. Value numbering assigns numbers to the expressions in a control
flow graph such that if two expressions have the same number, they have the
same value. Value numbers are used in value folding, an optimization that
replaces expressions with constants and removes redundent computations.
Expression propagation removes unnecessary stores. Special optimizations
are performed to remove unnecessary persistent checks. Finally, peephole
optimizations are performed on generated bytecodes to remove instructions
that have no meaningful effect.

132 CHAPTER 8. PROGRAM TRANSFORMATIONS

Chapter 9

Type-Based Alias Analysis

BLOAT uses type-based alias analysis (TBAA) [DMM98] to determine the
aliasing relationships between entities in Java programs. However, before
TBAA can be properly discussed, BLOAT’s class hierarchy management
and type inferencing mechanism must be explained.

9.1 BLOAT’s Class Hierarchy

Type-based alias analysis relies on knowing the type hierarchy of the objects
in a program. BLOAT maintains the inheritance hierarchy using the bloat .
tbaa.ClassHierarchy class. ClassHierarchy maintains two bloat.util.
Graphs containing type information about classes. One Graph represents
the class inheritance hierarchy (“who extends who”). Another Graph rep-
resents the interface implementation hierarchy (“who implements what”).
The nodes in the graph are instances of the TypeNode, a class private to
ClassHierarchy that stores a bloat.editor.Type for the class or interface
represented by the node. The graphs are constructed such that a node’s
successor is its super class (or an interface that it implements).

A ClassHierarchy is constructed from a Collection of names of classes
and a bloat.editor.Editor is used to obtain information about the classes.
For each name in the Collection the private addClass method is invoked.
addClass maintains a worklist of Types to be added to the graphs and a list
of Types that are already in the graphs. The following process is repeated
until there are no more Types in the worklist. A TypeNode for the Type
is created in both graphs. Then, a bloat.editor.ClassEditor for the
Type is obtained from the Editor. From the ClassEditor, the Type of the
superclass of the Type in question is obtained and an edge from the Type’s

133

134 CHAPTER 9. TYPE-BASED ALIAS ANALYSIS

TypeNode to the TypeNode representing its superclass is inserted into the
“extends” graph. A similar procedure is carried out for the interfaces that
a class implements.

To get the maximum amount of type information from a class, all types
that the class references are added to the type worklist. The private addType
method is invoked for the Type of a class’s superclass, each interface it
implements, each of its methods and fields, and each entry in its constant
pool. addType extracts Type information from another Type and adds it to
the worklist. If the Type is a method, then the Types of its parameters and
its return Type are added to the worklist. If the Type is an array, the Type
of its elements is added to the worklist. In any other case, if the Type does
not represent one of the primitive (int, float, etc.) types, it is added to
the worklist!.

ClassHierarchy has a number of methods for obtaining information
from the graphs. It has methods to obtain the superclass and subclasses
of a given Type, the interfaces a Type implements, and classes that imple-
ment a given Type. It also has methods that can determine if one Type is
a subtype of another. The intersectType method returns the intersection
of two Types. The intersection of two types is the most refined type to
which both Types may be assigned. If the types are assignment compatible
(e.g. a long and an array type are not assignment compatible), then the
NULL Type is returned. If one Type is a subtype of the other, the subtype
is returned. Conversely, the unionType method computes the union of two
Types. The union of two types is their most refined common supertype. If
both types have a common supertype, then that Type is returned. Other-
wise, the java.lang.0bject Type is returned.

9.2 Type Inferencing

Type-Based Alias Analysis requires that the types of all of the entities in
a program be known. For fields, method parameters, and method return
types, this is not a problem, but the types of stack and local variables
must be inferred. The bloat.tbaa.TypeInference class uses a simplified
(intraprocedural) version of the type inference algorithm presented by Pals-
berg and Schwartzback in [PSb94]. A constraint model is used to compute

!This policy had to be modified due to performance. A closure parameter was added
to ClassHierarchy. If closure is false only a class’s superclass and interfaces are added to
the hierarchy. Consequently, if a type is not present in the hierarchy when getClassNode
or getInterfaceNode is called, we attempt to load it into the hierarchy.

9.2. TYPE INFERENCING 135

types. Method parameters, the this variable, field references, and the re-
sult of method calls initialize the types of program variables. Assignments
(including ¢-statement) propagate type information.

The type inference process begins with TypeInference’s transform
method. transform uses a TreeVisitor to determine the types of the
variables initialized in each InitStmt. This type information is propagated
to all uses of the LocalExprs initialized in the InitStmts. Additionally,
all Exprs (except those LocalExprs whose types have been initialized) have
their type set to be undefined.

Type inferencing pays special attention to integral types by differen-
tiating between shorts, chars, bytes, booleans, and ints. The range of
values an integral type may taken on is represented by a bit vector (BitSet).
TypeInference’s typeToSet method creates a bit vector representing a
given integral type. For instance, if typeToSet is given a short type, all of
the bit vector’s bits between MIN_SHORT and MAX _SHORT will be set. There
is also a setToType method that converts a bit set into the Type that mini-
mally represents the range encoded in the bit set. The bit set representation
is used so that computing the union of two integral type involves nothing
more than “or-ing” two bit vectors together.

There are two helper methods that work with the constraint system,
start and prop. start initializes a constraint by assigning a Type to a
given expression (Expr). start will not assign an Type of undefined to
an expression. If the expression already has a Type assigned to it, the
expression’s new Type is the union of the old type and the new type as
determined by the ClassHierarchy (see section 9.1). If both the expression
and the new type are integral types, then the new type is computed by
“or-ing” together the two bit vectors that represent the two types. Finally,
the type of each Node equivalent (in the SSAGraph) to the expression is set
to the new type. The prop method propagates type information from one
Expr to another. It uses start to do all of the real work.

Each component in the SCC of the FlowGraph’s SSAGraph? is visited by
a TypeInferenceVisitor. The TypeInferenceVisitor is a TreeVisitor
that does most of the type inference work. Depending on the kind of Expr
being visited, a constraint is either started or propagated.

ShiftExpr If the expression being shifted is an integral type, then the
ShiftExpr has type Type.INTEGER. Otherwise, the type of the ex-
pression being shifted is propagated to the type of the ShiftExpr.

2Qh yes, they’re back!

136 CHAPTER 9. TYPE-BASED ALIAS ANALYSIS

ArithExpr If either of the ArithExpr’s operands is an integral type, then
the entire ArithExpr has a type of Type.INTEGER. If the operation
being performed is one of the compare operations (ArithExpr.CMP,
etc.), then the ArithExpr has a type of Type.INTEGER. Otherwise,
the type of the left-hand operand is propagated to the ArithExpr.

NegExpr If the expression being negated has an integral type, then the type
of the NegExpr is Type . INTEGER. Otherwise, the type of the expression
being negated is propagated to the NegExpr.

ReturnAddressExpr A ReturnAddressExpr always has type Type . ADDRESS.

CheckExpr A CheckExpr always has the same type as the expression it
checks.

InstanceOfExpr An InstanceOfExpr always has a type of Type . INTEGER?.
ArrayLengthExpr An ArrayLengthExpr always has a type of Type . INTEGER.

VarExpr If a VarExpr does not define a variable, then the type of the
VarExpr defining expression is propagated to the VarExpr.

StackManipStmt A StackManipStmt is essentially an assignment from a set
of “source” stack variables to a set of “destination” stack variables.
Type information is propagated appropriately depending on the kind
of StackManipStmt. Because it is a Stmt, its children are visited.

StoreExpr The type information of the expression on the right-hand side of
the store is propagated to the left-hand side of the store. The type of
the left-hand side of the store is propagated to the entire StoreExpr.

CatchExpr The type of the exception being caught is propagated to the
type of the CatchExpr. If the type of the exception being caught is
unknown, then Type.THROWABLE is used.

PhiStmt The type information of each of the PhiStmt’s operands is prop-
agated to its target. Recall that the union of types is taken. If an
operand is an undefined local variable, the type of the target is prop-
agated back to the operand so it, too, will have a type.

3BLOAT does not make the distinction between boolean types and integral types.

9.2. TYPE INFERENCING 137

ArrayRefExpr If the ArrayRefExpr is not a definition and its array type is
defined and meets certain criteria (is not Type.0BJECT, nor serializ-
able, nor cloneable, nor null), then the type of the array is propagated
to the type of the ArrayRefExpr.

CallMethodExpr Because all of BLOAT’s analysis is intraprocedural, the
only propagation that occurs is the propagation of the return type of
the method to the type of the CallMethodExpr.

CallStaticExpr The return type of the method is propagated into the
CallStaticExpr.

CastExpr Type type to which the expression is being cast is propagated
into the CastExpr.

ConstantExpr The type of the constant is propagated into the type of the
ConstantExpr. If the constant’s type is integral, then special care is
taken to assign it the correct integral type based on its value.

FieldExpr If the FieldExpr is not a definition, the type of the field is
propagated to the type of the FieldExpr.

NewArrayExpr If the element type of the array being created is defined,
then the type of an array of the element type is propagated to the
NewArrayExpr.

NewExpr The type of the object being created is propagated to the type of
the NewExpr.

NewMultiArrayExpr If the element type of the array being created is de-
fined, then the type of an array of those elements is propagated to the
NewMultiArrayExpr.

StaticFieldExpr If the StaticFieldExpr is not a definition, then the type
of the field is propagated to the type of the StaticFieldExpr.
9.2.1 An Example of Type Inferencing

The following program gives a simple example of what type inferencing can
do.

public class Types {
Object f(boolean b) {

138 CHAPTER 9. TYPE-BASED ALIAS ANALYSIS

1 abel _30

I'abel _31
INTLrO O Lil 1
goto label 0 caught by [
1 abel _29

| abel _0
i10 (Li1_1 == 0) then <block |abel _16 hdr=abel _30> el se <block |abel 4 hdr=label 30> caught by [

RN

Tabel 16
eval (Li1.18 := 0]
ew Lj av

eval (Sr0_11 :=

oat;) (Sr0_13, Sri1_15)

eval (Lr2_17

eval Sr1_15. <

goto I abel _27 caught by []

goto | abel _27

Tabel 7
new Lj aval | ang/ I nt eger ;)

= dup(Sr0_11)
ni t>(1)
= Sro_13)

caught by [

|

Tabel _27

= Phi(label _16=Lr2_9, |abel 4=Lr2_17

= Phi (1 abel _16=Li1_18, |abel _4=Li1_1)
return Lr2_33 caught by [

Lr2_33
Li1 27

Figure 9.1: Control Flow Graph Demonstrating Type Inferencing

Object o;
if (b)
o
else
o = new Float(2.5);
return(o);

new Integer(1);

The control flow graph in SSA form for this method is given in Figure
9.1. Table 9.1 gives the types of selected expressions in the method before
type inferencing is performed. Lr0_0, the this pointer, has the expected
LTypes; type. The first Lri_1 is from block 31 and has the correct boolean
(Z) type. However, because its comparison to 0 in block 0, Lr1_1 takes on
an integer type. At this point, all objects have type Ljava/lang/0Object;.

Table 9.2 shows the types of selected expressions after type inferencing.
The type of Lil_1 in block 0 is correctly identified as being boolean. The
types of the new expressions are more precisely identified as Ljava/lang/-

9.3. TYPE-BASED ALIAS ANALYSIS 139

‘ Expression ‘ Type

Lr0.0 LTypes;

Li1 1 (block 31) Z

Li1_1 (block 0) I

new Ljava/lang/Integer; | Ljava/lang/Object;
Lr2.17 Ljava/lang/Object;
new Ljava/lang/Float; Ljava/lang/Object;
Lr2.9 Ljava/lang/Object;
Lr2 33 Ljava/lang/Object;

Table 9.1: Types Before Type Inferencing

‘ Expression ‘ Type
Lr00 LTypes;
Li1 1 (block 31) 7Z
Li1_1 (block 0) Z
new Ljava/lang/Integer; | Ljava/lang/Integer;
Lr2.17 Ljava/lang/Integer;
new Ljava/lang/Float; Ljava/lang/Float;
Lr2.9 Ljava/lang/Float;
Lr2 33 Ljava/lang/Number;

Table 9.2: Types After Type Inferencing

Integer; and Ljava/lang/Float;. These types are also propagated to
Lr2 17 and Lr2 9. The local variable Lr2_33 is the result of a ¢-statement
merging Lr2 9 and Lr2_17. Its type should be the most refined common
supertype of Ljava/lang/Integer; and Ljava/lang/Float. Type infer-
encing correctly identifies this type as Ljava/lang/Number;.

9.3 Type-Based Alias Analysis

Alias analysis examines pointers and disambiguates memory references so
that instructions may be reordered safely. Many alias analyses have un-
desirable properties such as being slow and requiring an entire program.
Type-based alias analysis [DMM98] performs alias analysis on a program
written in a type-safe language such as Java and uses type declarations to

140 CHAPTER 9. TYPE-BASED ALIAS ANALYSIS

‘ Notation ‘ Name ‘ Variable accessed ‘
p.f Field access | Field f of class instance to
which p refers
pli] Array access | Component with subscript ¢ of
array to which p refers

Table 9.3: Elements of an Access Path

disambiguate memory references.

An access path is a non-empty sequence of memory references (see Table
9.3). An example access path would be a.bi].c. If a lexically identical
occurrence of an access path occurs in a program, it may be redundant.
However, the fact that elements of an access path reference memory locations
complicates matters. Some other program entity may reference the same
memory location as one of the elements of the access path. In that case,
we cannot guarantee that the second occurrence of the access path is truly
redundant.

The declared (compile-time) type of an access path is denoted T'ype(p).
Any type that may be assigned to Type(p) occurs in Subtype(Type(p)).
TBAA considers the types and subtypes of each variable in a method to
disambiguate references. Basically, if we know that two variables have in-
compatible types, then we can guarantee that they can never reference each
other. Two access paths p and ¢ may be aliases only if the T'ypeDecl(p, q)
relation holds:

TypeDecl(AP1, AP2) = Subtypes(Type(AP1)) N Subtypes(Type(AP2)) # 0

The alias test is further refined by considering an object’s fields and is
presented in Table 9.4. BLOAT uses the Field TypeDecl relation to determine
the alias relationship between two access paths.

9.3.1 Implementation

BLOAT’s implementation of typed-based alias analysis is relatively straight-
forward. MemRefExprs are expressions that reference locations in memory.
Thus, an access path may consist of field references (FieldExpr or Static-
FieldExpr) and array references (ArrayRefExpr). The class bloat.tbaa.
TBAA has one method, canAlias, that determines whether or not two Exprs
can alias each other.

9.4. SUMMARY 141

‘ Case ‘ AP, ‘ APy ‘ FieldTypeDecl (AP, AP2) ‘
1 p P true
pf | qg | (f=g)A FieldTypeDecl(p,q)
p.f | q[i] | false

pli] | qlj] | FieldTypeDecl(p, q)
P q TypeDecl(p, q)

T W N

Table 9.4: Field TypeDecl (AP1, AP3)

If either of the Exprs is not a MemRefExpr, then they obviously cannot
alias each other. If the two Exprs are equal, then they can alias each other.
Then the rules of FieldTypeDecl are followed. If one of the expression ref-
erences an array and another references a field, then they cannot alias each
other. If both expressions reference arrays, then each expression is checked
to make sure that it is a valid array reference (i.e. the indices are integral
and the array type is indeed an array type). If both are valid, then an
optimization is performed. If both array references have constant indices
of different value, then the array references cannot alias each other. Oth-
erwise the ClassHierarchy is consulted to determine whether or not the
types of the elements of the two arrays being referenced intersect. This is
the TypeDecl relationship.

In any other case, both expressions reference fields. If either of the fields
is volatile, then they may be aliases. If either of the fields is final, they
cannot be aliases. If the fields have the same name, they may alias each
other. Finally, if all else fails, the TypeDecl relationship is applied to the
types of the two fields.

9.4 Summary

BLOAT uses type-based alias analysis to determine whether or not two ac-
cess paths (memory references) and refer to the same object. If a redundant
access path can alias another, the redundant access path cannot be removed.
Type-based alias analysis requires type information that is maintained in a
class hierarchy. Because type information for local and stack variables is not
explicit in Java bytecode, it must be inferred.

4Recall that a volatile field is always reloaded from memory upon its use. It is expected
that a volatile field’s contents will be modified by other threads.

142 CHAPTER 9. TYPE-BASED ALIAS ANALYSIS

Chapter 10

Partial Redundancy
Elimination

Well, folks, it’s the chapter we’ve all been dreading: SSAPRE. Legend has
it that it took Nate two weeks to get a feeling for it and a full six weeks
to really understand it. I stared at Chow’s paper for a week and was still
clueless. However, now that we all know about SSA form and control flow
graphs, it shouldn’t be that bad. Right?

10.1 Background

In the world of optimization calculating something twice is bad. Let’s sup-
pose that a program calculates an expression, a + b, and then a little while
later calculates a + b again. If neither a nor b has changed, then the second
calculation of a+b is redundant. We could save the result of the first calcula-
tion of a + b to a temporary variable and then replace the second calculation
of a 4+ b with the temporary, thus avoiding the redundant calculation.
Partial Redundancy Elimination (PRE) eliminates redundant computa-
tions of expressions that do not necessarily occur on all control flow paths
that lead to a given redundant computation. An example is given in Figure
10.1. The expression a+b is redundant along the left-hand control flow path,
but not the right. PRE recognizes this fact, and inserts a computation of
a+b along the right-hand path. Thus, the computation of a+b at the merge
point is fully redundant and can be replaced with a temporary variable.
PRE has been around for a while, but it used bit vectors (which do not
work well with SSA form) to represent partially redundant expressions. Fred
Chow and friends [CCK197] formulated a method for performing PRE on

143

144 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

a a a
b« a b« b«
a+b b« t<—a+b t<—a+b

Y Y

a-+b t
(a) Before PRE (b) After PRE

Figure 10.1: Partial Redundancy Elimination

a control flow graph in SSA form, SSAPRE.

SSA form is mainly concerned with variables. Recall that each SSA
variable has a unique definition. When a merge of control flow occurs, a ¢-
statement is used to factor together SSA variables that are available along
the various incoming paths. Representing expressions in SSA form is kind
of awkward. An expression is not “defined” like a variable is. SSA variables
also complicate matters. Is a; + b; the same as ao + b37 SSAPRE works
with lezically identical expressions and ignores differences in SSA variable
numbers. That is, a; + b; and as + b3 are lexically identical. Additionally,
expressions are referred to by a hypothetical temporary, h, that represents
a variable to which the expression could be assigned (h < a + b). When
expressions (represented by their hypothetical temporaries) reach a control
flow merge point, they are merged together using a ®-statement similar to
the ¢-statement for variables.

There are six steps to SSAPRE: ®-Insertion, renaming, computing “down
safety”, determining where an expression “will be available”, finalization,
and code motion. ®-insertion and renaming are similar to steps in SSA
form conversion. Down safety and “will be available” determine which ex-
pressions are partially redundant and where additional computations need
to be inserted. Finalization and code motion insert the additional compu-
tations and replace redundant computations with temporaries.

10.1.1 ®-insertion

The input to SSAPRE is a control flow graph in SSA form that has had
its critical edges removed. Recall that critical edges connect a block with
more than one predecessor to a block with more than one successor. Critical

10.1. BACKGROUND 145

ai +b;
ay + b

a4 + ¢(az,a3)
as + by

Figure 10.2: An example program

edges were removed by inserting an empty block along the edge (see Section
5.6.9). The control flow graph given in Figure 10.2 will serve as an example
throughout the explanation of the SSAPRE algorithm!.

A P-statement is needed whenever different values of an expression reach
a common point in the program. There are two situations in which ®-
statements must be inserted. First of all, ®-statements are inserted in the
blocks in the iterated dominance frontier (see section 5.6.2) of the blocks
in which the expression occurs. A ®-statement is inserted in block 3 of
Figure 10.3 because block 3 is in the iterated dominance frontier of block
1 (in which an occurrence of a + b occurs). A ®-statement must also be
inserted in a block containing a ¢-statement for one of the variables in the
expression. The ¢-statement signifies that the variable has been redefined
and thus the expression in which the variable is used, may have a new value.
The ®-statements in blocks 6 and 8 in Figure 10.3 are inserted because the
contain ¢-statements for variable a. Note that it is not necessary to insert
a ®-statement in block 10 because there is no occurrence of the expression
after block 10.

Figure 10.4 gives the algorithm for performing ®-insertion. The set
DF _phis[i] is used to keep track of the ®-statements for expression E; in-

!These figures and algorithms were taken from Fred Chow’s SSAPRE paper [CCK*97].

146 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

az + ¢(aq,a1)

Lo &L BN
v— ®{h,n)
l 6

as &

a +b
a1 + b1

as + ¢(a2,a3)
h &(h, k)
as + by

h is hypothetical
temporary for
a+b

Figure 10.3: Inserting ®-statements

serted due to the first (dominance frontier) situation. The set Var_phis[i][j]
is used to keep track of the ®-statements for expression F; inserted due to
the second (¢-statement defining the j** variable in E;) ®-insertion criterion.

10.1.2 Renaming

Once ®-statements of the form h < ®(h,h) have been inserted into the
control flow graph, version numbers are assigned to the hypothetical tempo-
raries, h. Occurrences of an expression with identical h-version have identical
values and any control flow path that crosses two different h-versions must
cross a definition of one of the expressions operands or a ®-statement for
the expression. The renaming algorithm for SSAPRE is similar to that of
SSA construction except that there is a renaming stack for each (lexically
distinct) expression.
An expression, h, may occur in one of three forms:

Real occurrence An evaluation of the expression as it occurs in the orig-
inal program

d-statement The result (target) of a ®-statement that was inserted during
the previous step

10.1. BACKGROUND

procedure ®-Insertion begin
for each expression E; do
DF phis[i] + 0
for each variable j in E; do
Var_phis[i][j] < 0
for each occurrence X of E; in program do
DF _phis[i] + DF _phis[i]UIDF(X)
for each variable occurrence v in X do
if (V is defined by a ¢-statement) then
j<+index of V in X
Set_var_phis(Phi(V),1, j)
for each expression E; do
for each variable j in E; do
DF _phis[i]| < DF _phis[i] U Var_phis[i][j]
insert ®-statements for E; according to DF _phis]i]

procedure Set_var_phis(phi,i,j) begin
if (phi & Var_phis[i][j]) then
Var_phis[i][j] < Var_phis[i][j] U phi
for each operand V in phi do
if (V is defined by a ¢-statement) then
Set_var_phis(Phi(V), 1, 7)

Figure 10.4: Algorithm for ®-insertion

147

148 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

®-operand An operand of a ®-statement: an evaluation of the expression
that can be considered to occur in the predecessor block

The renaming algorithm performs a pre-order traversal of the dominator
tree of the control flow graph and handles each occurrence, g, of a given
expression as follows. If the occurrence is a ®-statement, the occurrence is
assigned a new version number. That is, the hypothetical defined by the
d-statement is given a new version number. Otherwise, the variables that
comprise the expression are considered. If each of the SSA versions on top
of each variable’s renaming stack matches the SSA versions of the variables
in the expression, the occurrence q is assigned the version number on top of
the expression’s renaming stack. If any of the variables’ version numbers do
not match, then one of two situations occurs. If ¢ is a real occurrence, then
it is assigned a new version number. Otherwise, if ¢ is a ®-operand, then
it is assigned the version number | signifying that the expression is not
computed along the control flow path corresponding to that ®-statement
operand.

Figure 10.5 shows the results of renaming the hypotheticals. Since the
occurrence of a + b in block 1 is the first occurrence, it is assigned a new
version number (h;). There is no occurrence of a + b along the path (block
2) corresponding to the second operand of the ®-statement in block 3, so
it has the | version number. Because neither a nor b is modified between
the ®-statement in block 3 and the real occurrence of a 4+ b in block 9, the
occurrences in block 9 have the same version number as the ®-statement in
block 3. The second operand of the ®-statement in block 8 is | because a is
defined in it predecessor block, block 7, but a + b is not recomputed before
its occurrence as a ®-statement operand in block 7.

10.1.3 Computing Down Safety

In order for a computation of an expression to be inserted, the expression
should be down safe at that point. Come to find out, we only care about the
down safety of ®-statements. A ®-statement is down safe if all control flow
paths from that ®-statement to the program (method) exit either: (1) re-
compute the expression, or (2) redefine one of the variables in the expression.
The only circumstances in which a ®-statement will not be down safe are:
(a) if there is a path from the ®-statement to the exit on which the result of
the ®-statement is not used, or (b) if there a path to the exit on which the
result of the ®-statement is used only as an operand to another ®-statement
which itself is not down safe. The result of a down safe ®-statement will be

10.1. BACKGROUND 149

e

coCco

N '
az & Plas, Y1)
hs — ®thohs

/ T v 6

i
[T

dg
st
wra 1 ' ' [k

, ! ! v | ar+o1 [h2]

| . a3 "I oar+b1 [ha]4

' , - 9

! ' LR

, ’

\ a4 — &a2,a3) lc)ls:}' J

' ha +— BVha, L)|later =0,/

v wba =]

' a4 +b1 [ha) 8 !

’
\ L
N
v, dense SSA

ﬁ \ graph (use-def
arcs shown)

10

Figure 10.5: After renaming

used at least once on all paths from the ®-statement to the exit node. If
a ®-statement is not down safe, it is not worth our while to add an earlier
evaluation of the expression. From the above definition, it becomes clear
that computing down safety is a backwards data flow problem.

Down safety information begins at ®-statements meeting condition (a)
and propagates backward in the program until condition (b) is not satisfied.
Condition (b) will be satisfied until a real occurrence of the expression is
encountered. Accordingly, each of the ®-statement’s operands has a “has
real use” flag that is set when the operand (one of those “hypothetical
temporaries”) is defined by a real occurrence. Initially, all ®-statements are
marked as being down safe and all operands have their “has real use” flag set
to false. The initially (condition (a)) down safety ®-statements and the “has
real use” flags can be computed during the renaming step. Recall that the
renaming step makes a pre-order (with respect to the control flow graph’s
dominator tree) traversal of the SSA graph. When a new version number
is assigned to a real occurrence of the expression or when program exit is
encountered, if the top of the expression’s rename stack is a ®-statement,
then that ®-statement is not down safe because the version it defines is not
used along the path to a real occurrence (or exit). When a version number
is assigned to a ®-statement’s operand, its “has real use” flag is set if and

150 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

procedure DownSafety begin
for each ®-statement F' in the program do
if (not(down_safe(F))) then
for each operand o of F' do
Reset_downsafe(o)

procedure Reset_downsafe(X) begin

if (has_real_use(X) or X not defined by a ®-statement) then
return

F + ®-statement that defines X

if (not(down_safe(F))) then
return

down_safe(F) « false

for each operand o of F' do
Reset_downsa fe(o)

Figure 10.6: Computing Down Safety

only if the version on top of the expression’s renaming stack is the same as
the operand’s and is defined by a real occurrence.

After the initial conditions are set up during renaming, the down safety
information is propagated through the program using the algorithm found
in Figure 10.6. Let us again consider Figure 10.5. The “has real use” flag of
the first operand of the ®-statement in block 3 is set because hy is defined
by a real occurrence in block 1. Hypotheticals hy (second operand of the
®-statement in block 6) and hs (first operand of ®-statement in block 8)
have false “has real use” flags because they are defined by ®-statements. hy
is a little peculiar. Its “has real use” flag is indeed set even though it is
defined by a ®-statement. The real occurrence of @ + b in block 8 causes the
version on top of a + b’s renaming stack to correspond to a real occurrence.
Thus h4 has a real use?. Now let us turn out attention to the ®-statements
themselves. The ®-statement in block 3 is not down safe because there is
a path from the ®-statement to the exit block (block 3, block 4, block 10)
on which a + b is not recomputed and neither a nor b is redefined. Both
the ®-statements in block 6 and in block 8 are down safe because a + b is
recomputed in block 8 before exit.

2Chow says an operand has a real use when “the path to the ® operand crosses a real
occurrence of the same version of the expression”. I guess this case fits that description.

10.1. BACKGROUND 151

10.1.4 Will Be Available

The “will be available” step determines whether or not an expression’s value
will be available at each ®-statement after insertions for PRE. The first
step is to determine which ®-statements “can be available”®. Initially all
d-statements can be available. Then, all all ®-statements that are not down
safe and have at least one | operand are marked as can not be available.
The can’t be available property is propagated along the def-use arcs of the
SSA graph to other ®-statements that are not down safe. The propagation
stops when an operand is encountered that has a real use. ®-statement
operands that are not “can be available” are set to L along the way. In
Figure 10.5 the ®-statement in block 3 cannot be available because it is not
down safe and one of its operands is |. Because the ®-statements in blocks
6 and 8 are down safe, they can also be available.

At this point, a ®-statement is not “can be available” if and only if no
down-safe* placement of computations can make the expression available.
The ®-statements that can be available designate the range of down-safe
program areas for insertion of the expression, plus areas that are not down-
safe but where the expression is fully available in the original program. The
entry points to this region (the L-valued ® operands) can be thought of as
SSAPRE’s earliest insertion points. At least that’s what Fred says.

Next, the algorithm determines the latest palces in the program at which
expressions can be inserted. A ®-statement’s “later” predicate is used. Ini-
tially, “later” is true whenever a ®-statement can be available. Starting with
the real occurrences of the expressions (the operands that have a real use),
the false value of later is propagated from an operand to the ®-statement
in which it occurs. In Figure 10.5 the ®-statement in block 3 is not later
because its first operand has a real use. This lack of laterness is propagated
to the ®-statement in block 6 because the hypothetical defined by the ®-
statement in block 3, hs, is used as an operand to ®-statement in block 6.
It is also propagated to the ®-statement in block 8 because hg is an operand
to that ®-statement.

The value of the “will be available” predicate is given by:

will_be_avail = can_be_avail N\ —later

3I'm surprised that ®-statements don’t have a “should be available next Thursday”
flag. Sheesh.

4Remember a computation is down safe if all control flow paths from the expression to
exit contain a recomputation of the expression or an alteration of one of the variables in
the expression.

152 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

procedure Compute_can_be_avail begin
for each ®-statement F' in the program do
if (not(down_safe(F)) and can_be_avail(F) and 3 an operand of F' that is L) then
Reset_can_be_avail(F)

procedure Reset_can_be_avail(G) begin
can_be_avail < false
for each ®-statement F' with operand o defined by G do
if (not(has_real_use(o))) then
set that ®-operand to L
if (not(down_safe(F)) and can_be_avail(F)) then
Reset_can_be_avail(F)

procedure Compute_later begin
for each ®-statement F' in the program do
later(F) < can_be_avail(F")
for each ®-statement F' in the program do
if (later(F) and 3 an operand o of F such that (0 # L and has-real_use(o))) then
Reset later(F)

procedure Reset_later(G) begin
later(G) « false
for each ®-statement F' with operand o defined by G do
if (later(F)) then
Reset later(F)

procedure WillBe Avail begin

Compute_can_be_avail
Compute later

Figure 10.7: Will Be Available
The algorithm for computing “will be available” is given in Figure 10.7.
Additionally, the “insert” predicate for a ®-operand holds if and only if:

1. The ®-statement will be available; and

2. The operand is L, or it does not have a real use and is defined by a
®-statement that will not be available.

10.1.5 Finalize

The finalize step transforms the SSA graph for the hypothetical temporary
representing an expression into a valid SSA form in which no ®-statement

10.1. BACKGROUND 153

operand is L. The finalize step performs the following tasks:

1. Tt decides whether or not a real occurrence of the expression should be
computed at that point or reloaded from a temporary (the “reload”
flag). If the expression is to be computed, it also decides whether or
not the result should be saved to a temporary (the “save” flag).

2. For ®-statements whose “will be available” flag is true, computations
of the expressions are inserted along the incoming edges on which the
expression is not available (operand is L).

3. ®-statements whose “will be available” flag is true may be transformed
into ¢-statements for the temporary variable. ®-statements that will
not be available are taken out of consideration. Edges in the SSA
Graph that reference these ®-statements are fixed up to refer to other
(real or inserted) occurrences.

These tasks are performed with the help of the Avail_def table for each
expression. The indices into Avail_def are the SSA versions for the hypo-
thetical temporary, h. So, Awvail_def[z] will refer to the definition of hy,
either a real occurrence or a ®-statement that “will be available”. The fi-
nalize algorithm performs a pre-order traversal of the control flow graph’s
dominator tree. When it encounters a defining occurrence, its value will be
saved into a temporary, t. If another occurrence references ¢, it will either be
a redundant computation that can be replaced by ¢ or a ®-operand of a ®-
statement that will be transformed into a ¢-statement with ¢ as an operand.
The finalize step handles each kind of expression occurrence as follows.

®-statement If it will not be available®, nothing interesting happens. Oth-
erwise, it is a defining occurrence for h, and Avail_def[z] is set accord-

ingly.

A real occurrence Real occurrences have a hypothetical, h;, associated
with them. If Avail_def[z] is defined, but the defining occurrence does
not dominate the current (real) occurrence, the current occurrence
also defines hy. Awvail_def[z] is set to the current occurrence. If the
defining occurrence does dominate the current occurrence, then we can
reload the value from the temporary. Thus, the “save” flag is set for
Avail def[z] and the “reload” flag is set for the current occurrence.

"Reminds me of most of the women I try to date.

154 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

d-operand If the operand’s ®-statement will not be available, nothing hap-
pens. Otherwise, if the operand’s “insert” flag is set, a computation
of the expression is inserted at the end of the block corresponding to
the operand (the predecessor block). If the operand’s “insert” flag is
not set, then the “save” flag of Avail_def[z] (the ®-operand has hypo-
thetical h;) is set and the operand is updated to refer to Avail_def|[z].

The finalize algorithm is given in Figure 10.9. The result of performing
the finalize step the control flow graph of Figure 10.5 is shown in Figure
10.8. Block 9 is interesting. Because Avail_def[2] (a + b) found in block
1 does not dominate block 9, the first a + b in block 9 in also a defining
occurrence. So, it is assigned a new version number. (It would have been
nice if this had been stated somewhere in the algorithm.) Consequently, the
version number of the second real occurrence of a + b in block 9 is changed
to h7. Let us also consider block 8. Since the ®-statement’s second operand
satisfies insert (because its ®-statement will be available and the operand is
1), a computation of a+ b is inserted at the end of the preceding block (and
given the version hg). The same thing happens to the second operand of the
®-statement in block 6. However, that operand satisfies “insert” because its
P-statement will be available, the operand does not have a real use, and the
d-statement that defines the operand will not be available.

10.1.6 Code Motion

Now that the hypothetical temporaries, h, are in valid SSA form, real tem-
poraries, £, can be inserted into the program to eliminate redundant compu-
tations. The code motion step makes a traversal of h’s SSA graph. When a
real occurrence with a set “save” flag is encountered, the result of the real
occurrence is saved into a new temporary, t. If the real occurrence’s “reload”
flag is true, then the real occurrence is replaced by a use of . When one
of the real occurrences that was inserted during the finalize step is encoun-
tered, its value is saved into a new t. When a ®-statement is encountered,
it is replaced by an equivalent ¢-statement.

Figure 10.10 shows our long-suffering control flow graph after code mo-
tion. No ¢-statement was generated for the ®-statement in block 3 because
one of its operands was L. The real occurrence inserted in blocks 5 and 7
were replaced with a computation. The ®-statements in blocks 6 and 8 were
replaced with ¢-statements. The defining real occurrence in block 9 had its
value saved to a temporary which was then used in place of the redundant
real occurrence.

10.1. BACKGROUND 155

[ai+b [h}'—]l1 [.]

niun®
QOOoOo

¥ I3
az + Phgna1)

cg: = i ' "
I e UNE MY

. '] V [ar + 60 [Bre]
| ' as & Ve + by [he]

1 : '[g] v : ’.

f U I(,'

' B4 — P az,a3 ds=1 ,

' s 2Xha, o) le:t:ezgti)

R '104 +b ['MJ e
. p N ’
' N precise SSA

graph (use-def

Lexit | \ arce shown)

Figure 10.8: After finalize

10.1.7 But, wait. There’s more!

The first part of this chapter presents the fundamental idea of SSA-based
Partial Redundancy Elimination. However, there are a couple of optimiza-
tions that can be made to the algorithm to improve its efficiency.

Using a Worklist

Because SSAPRE is a sparse algorithm, storage space can be reduced if the
lexically distinct expressions are handled one at a time. Thus, a worklist of
expressions can be maintained. The “collect occurrences” step examines the
program (method in our case) and builds a worklist of expressions that need
to be worked on by SSAPRE. The collect occurrences step only considers
first order (non-nested) expressions. So, for the expression (a + b) — ¢ only
a + b will be entered into the worklist. However, if as a result of SSAPRE
a + b is replaced by a temporary, t, the code motion step will add the new
first order expression ¢ — ¢ into the worklist.

Delayed Renaming

Because we are now using the worklist-driven approach, the renaming step
does not need to pass over the entire control flow graph. However, the orig-

156 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

procedure Finalize visit(block begin
for each occurrence X of E; in block do
save(X) < false
reload(X) < false
x + version(X)
if (X is a ®-statement) then
if (will_be_avail(X)) then
Avail_def[i][z] + X
else if (Avail_def[i][z] is L or Awvail_def[i][x] does not dominate X) then
Avail_def[i][z] « true
else if (Avail_def[i][z] is a real occurrence) then
save(Avail_de f[i][z]) + true
reload(X) < true
for each S in Succ(block) do
j < WhichPred(S,block)
for each ®-statement F in S do
if (will_be_avail(F)) then
1 < WhichEzpr(F)
if (j** operand of F satisfies insert) then
insert E; at the exit of block
set 5" operand of F' to inserted occurrence
else
z + version(j" operand of F)
if (Avail_def[i][z] is real) then
save(Avail_de f[i][z] + true)
set ;" operand of F to Avail_def[i][z]
for each K in Children(DT,block) do
Finalize visit(K)

procedure Finalize begin
for each version z of Er in program do
Avail_def[i][x] + L
Finalize visit(Root(DT))

Figure 10.9: Finalize

10.1. BACKGROUND 157

az + ¢(as,a1)
tz +— ¢(i4,t1)

1 6
az «
tz ¢ as+b

ts—a; +b
iy

ts

a4 + ¢(az,a3)
ta+— ¢(ts,t2)
14

Figure 10.10: After code motion

inal renaming algorithm forces us to keep track of the current SSA numbers
of each variable. The purpose of the variable stacks in the original renaming
algorithm was to enable us to determine when the value of an available ex-
pression is no longer current. If any of the variables have versions different
from those in the expression, the expression is no longer current. For real
occurrences, the current versions of the variables are those found in the ex-
pression. The variable stacks are only necessary when renaming ®-statement
operands.

The “delayed renaming” step consists of two passes. The first pass be-
haves the same as the original renaming except that it does not use a variable
renaming stack. When it encounters a ®-operand it optimistically assumes
that the current variable version is that found in the expression on top of the
expression stack. The correct renaming occurs during the second pass which
relies on seeing later real occurrences. The first pass constructs a worklist
of all the real occurrences that are defined by ®-statements (such as the
real occurrences in block 9). From the versions of the variables found in the
block in which a ®-statement occurs, it determines the versions of the vari-
ables at each of the predecessor blocks taking into account any ¢-statements
in the merge block that cause a redefinition of one of the variables. If the
®-operand versions are different from those assigned in the first pass, the

158 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

a <— a <
a a.bli].c a <+ t < a.bli].c
a.bli].c z.b t < a.bfi].c z.b+

Y Y

a.bli].c t
(a) Before PRE (b) After PRE

Figure 10.11: Access Path PRE

operator’s version is invalidated by setting it to L. If the ®-operand is de-
fined by a ®-statement, it is added to the worklist. Consider block 8 in
Figure 10.3. The first pass will set the second operand of the ®-statement
to h3, the h defined by the ®-statement in block 6. The second pass will
correctly set it to L.

10.1.8 PRE for Access Paths

We now come to the topic of Nate’s Thesis: Partial Redundancy Elimination
for Access Paths. Recall that an access path is a non-empty sequence of
memory references (see section 9.3). In Java, access paths consist of field
and array accesses. BLOAT performs partial redundancy elimination on
access paths as well as first order expressions. An example of this is shown
in Figure 10.11. Access path aliasing may effect the amount of code motion
that PRE can perform. So, type-based alias analysis is used to determine
whether or not two memory references can refer to the same location.

10.2 Implementation

Now that you’ve digested the background information, it’s time for the im-
plementation. For the most part, the implementation follows the algorithm.
A couple of things need to be added to deal with access paths and certain
Java characteristics. Here we go.

Partial Redundancy Elimination is implemented by the public transform
method of the bloat.trans.SSAPRE class. The transform method first calls
collectOccurrences to create a worklist of expressions on which to per-
form SSAPRE and then calls the private transform on each expression in
the worklist until the worklist is empty. Each SSAPRE keeps track of infor-

10.2. IMPLEMENTATION 159

mation such as the FlowGraph on which SSAPRE is being performed and
the bloat.editor.Editor containing information about all the classes. It
implements the SSAPRE algorithm using a number of methods and several
auxiliary classes.

10.2.1 Kills

Several properties of the Java language hinder code motion and, specifically,
the partial redundancy elimination of access paths. BLOAT identifies alias
definition points, places in the method where aliased variables may be mod-
ified. Of course, memory references may cause aliasing. However, monitor
synchronization points may also result in aliasing. Java’s thread model spec-
ifies that any change made to a variable in one thread must be available to
all threads. Thus, we must assume that calling a method can cause an alias.
Additionally, code that may throw an exception cannot be hoisted out of a
protected region.

SSAPRE represents expressions that hinder code motion with the ab-
stract Kill class. Each Kill consists of an Expr and a integer key. Kills
are inserted into the worklist along with expressions (see section 10.2.5).
MemRefKill represents the situation in which two memory references may
alias each other. They are also used with synchronized blocks of code.

10.2.2 Modeling $-statements

Occurrences of an expression are modeled by the subclasses of the abstract
Def class. A Def consists of an integer version number that uniquely iden-
tifies the Def instance and is equivalent to the “h” variable. There are two
concrete subclasses of Def, RealDef and Phi. A RealDef contains an Expr.

A Phi models a ®-statement. As expected, the implementation logically
follows the algorithm. Each Phi is contained in a Block and has operands
that are themselves Defs. Each Phi has flags such as “down safe”, “can
be available”, “later”, and an array of flags representing the “has real use”

information for the operands. It also has a list of leaf expressions.

10.2.3 The Worklist

SSAPRE maintains a worklist of expressions on which PRE may be performed.
The worklist is implemented as the class ExprWorklist which contains a
linked list of ExprInfo objects. Each ExprInfo contains information about
an Expr in the control flow graph. Each ExprInfo is uniquely identified
by an ExprKey class. ExprKey consists of an Expr and an integer hashcode

160 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

computed from the Expr’s own hashcode (see NodeComparator.hashCode,
section 8.3.2) and the hashcode of its type. ExprKey’s 1istChildren method
returns the children of the Expr unless a child is a StoreExpr in which case
just the left hand side (target) is added to the children list. It also has an
equals method. Two ExprInfos are equal if their Exprs are of the same
type, they have the same number of children, and their children have the
same type (i.e. are both StackExprs or are both VarExprs and are “phi-
related”.

ExprInfo also keeps track of the number of uses the expression has,
the real occurrences of the expression at a given block, the ®-statements
(Phi) for the expression at a given block, and a mapping between an expres-
sion and its Def (see section 10.2.2). A FinalChecker is used to determine
whether or not the expression references a final field. FinalChecker is sim-
ply a TreeVisitor that makes note when a FieldExpr or StaticFieldExpr
references a final field. A bloat.trans.SideEffectChecker is used to de-
termine whether or not the expression has any side effects. For the purposes
of PRE, residency checks, update checks, stores, and possible reassignment
are not considered side effects. Additionally, if the expression is a CheckExpr
that references the stack, we make note of it. ExprInfo also maintains sev-
eral mappings between expressions and flags used to model the “save” and
“reload” flags, and to store the “availDefs”.

ExprWorklist has two methods for constructing the worklist, addReal
and addKill. addReal constructs an ExprKey for the occurrence (Expr)
and determines whether or not it has already been placed in the worklist.
If not, a new ExprInfo is created for the occurrence and it is added to the
worklist. In any case, the real occurrence is noted in the ExprInfo. addKill
makes note of a Kill at a given block. SSAPRE maintains a list of the Kills
at each basic block.

10.2.4 Is an Expression First Order?

SSAPRE works with first order (non-nested) expressions. SSAPRE’s is-
FirstOrder method determines whether or not an Expr is first order. is-
FirstOrder uses a FirstOrderChecker object to do the lion’s share of the
work. FirstOrderChecker is a TreeVisitor that does not visit any of the
Expr’s children. FirstOrderChecker relies on the private isLeaf method
to determine whether or not an Expr is a leaf (that is, has no children).
An Expr is a leaf if it is a LocalExpr (local variable), a ConstantExpr, or
a StoreExpr whose target is a LocalExpr. FirstOrderChecker handles
various kinds of Exprs as follows:

10.2. IMPLEMENTATION 161

CheckExpr If the CheckExpr is a leaf or if it checks a StackExpr (stack
variable), it is first order. We allow CheckExprs of stack variables to
be first order because they (the CheckExprs) can be eliminated and
replaced with stack variables. They cannot, however, be hoisted.

ArithExpr If both the left and right operands are leafs, then the ArithExpr
is first order.

ArrayRefExpr If both the array expression and the index are leafs, then the
ArrayRefExpr is first order.

CastExpr If the expression being cast is a leaf, then the CastExpr is first
order.

FieldExpr/StaticFieldExpr If the field is volatile, we do not consider it
to be first order. Otherwise, it is first order.

InstanceOfExpr/NegExpr If the expression being operated on is a leaf, then
the entire expression is first order.

ShiftExpr If both the expression being shifted and the expression for the
number of bits to shift are leafs, then the ShiftExpr is first order.

10.2.5 Constructing the Worklist

The private collectOccurrences method creates a worklist of expressions
to which PRE will be applied. Along the way, it keeps track of the maximum
value number (see section 8.3) encountered and inserts Kill statements into
the worklist. The first thing collectOccurrences does is to determine
which blocks in the control flow graph begin protected regions. This is done
by calling the private beginTry method. beginTry examines each block
in the control flow that begins an exception handler (the so-called “catch
blocks”, see section 5.5.2) and in a somewhat round about way that is not
worth describing, computes a list of the predecessors of these blocks.

The bulk of the work done by collectOccurrences consists of a Tree—
Visitor that builds the worklist. As each Node is visited its value number is
examined and the largest value number is remembered. Additionally, each
Expr’s “key” is set to its number in a pre-order traversal of the control flow
graph. The visitor is summarized as follows:

Block If the Block begins a protected region, then an ExceptionKill oc-
curs at the Block.

162 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

PhiStmt After visiting the PhiStmt’s children, each operand is examined. If
the operand is a VarExpr (local variable or stack variable) with a non-
null definition, the operand and the variable defined by the PhiStmt
are “phi-related”.

CatchExpr An ExceptionKill is noted at the block in which the CatchExpr
occurs.

MonitorStmt If the NO_THREAD flag is false, then a MemRefKill is noted at
the MonitorStmt’s block. Remember that the values of fields may
change at synchronization points.

CallExpr A MemRefKill is noted at the block in which the CallExpr occurs.

MemRefExpr Recall that a MemRefExpr models field and array references. If
the MemRefExpr is first order, then its children are visited. This is
calculated by the private isFirstOrder method.

Once the worklist of ExprInfos has been constructed, the transform
method is called on each ExprInfo in the worklist. transform implements
the remaining steps of SSAPRE on each expression. If the ExprInfo for the
expression of interest does not have any uses (numUses method), no actions
are performed on it.

10.2.6 Inserting ®-statements

The first step is place the ®-statements for the expression into the control
flow graph. This is performed by the private placePhis method. Recall
that ®-statements are placed at the iterated dominance frontier of each
occurrence of the expression and in any block in which a ¢-statement for
one of the variables in the expression occurs (see section 10.1.1).
placePhis begins by constructing a list of all of the blocks in which
expression occurs. This list is used as an input to FlowGraph’s iterated-
DomFrontier to compute the blocks in the expression’s iterated dominance
frontier. Each block in the control flow graph is visited and a worklist of
PhiStmts is constructed. Each real occurrence of the expression in question
at a given block is examined. If the parent of one of the expression’s operands
is a PhiStmt that is not yet in the list, the PhiStmt is added. The blocks that
contain the PhiStmt are added to the worklist containing the expression’s
iterated dominance frontier. If any of the arguments of the PhiStmts is
defined by a PhiStmt, the block containing the defining PhiStmt is also

10.3. THAT’S ALL, FOLKS 163

added to the list. Finally, ®-statements are inserted into the blocks in the
worklist using the ExprInfo’s addPhi method.

10.3 That’s all, folks

Well, boys and girls this is the end. It’s now October and it’s time for me to
start thinking about my thesis. I apologize for not completing the imple-
mentation of SSAPRE. However, I was having extreme difficulties figuring
out the code. Maybe someday someone will be motivated enough to finish
this chapter, or better yet, just rewrite the implementation. Anyway, I'll
send you off with a couple of examples of SSAPRE. Happy BLOATing!

10.4 Examples of PRE

This section discusses several examples of SSA-based partial redundancy
elimination. This first is a simple example of PRE of an expression. Figure
10.12 shows the control flow graph for the below Java code in SSA form
after type inferencing has occurred.

int f(boolean b, int i, int j) {
int k, 1;
if (b)
k=1i+ j;
else
k = 3;
1=1(+3j) *k;
return(l);

In this example, the expression i + j (Li2_2 + Li3_3) is partially re-
dundant in block 15. The control flow graph after SSA-based PRE has been
performed is given in Figure 10.13. As was expected, a computation of
Li2 2 + Li3_3 was added to block 12% and the occurrence in block 15 was
replaced by a variable (Li6_53) whose value is computed by the ¢-statement
Phi(label_12=Li6_47, label_ 4=Li6_49).

The second example shows the partial redundancy elimination of an
access path.

51 was hoping that the expression would be hoisted completely out of the if-statement,
but I guess it couldn’t figure that out. Sigh.

164 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

| abel _27

| abel _28
INIT Lr0_0 Lil 1 Li2 2 Li3_3
goto |abel _0 caught by []
| abel _26

| abel _0
ifO (Lil_1 == 0) then <block |abel _12 hdr=l abel _27> el se <block | abel _4 hdr=l abel _27> caught by []

| abel _12
eval (Li1_14
eval (Li4_5 :

goto | abel _15 caught by []

| abel _4
eval (Li4_13 := (Li2_2 + Li3_3)
goto |abel _15 caught by []

Tabel _15
Li1_36 := Phi(label _12=Li1_14, label _4=Li1_1)
Li4_24 := Phi(label _12=Li 4_5, |abel _4=Li4_13)
eval (Li5_9 := ((Li2_2 + Li3_3) * Li4_24))
return Li5_9 caught by []

[abel _29’
Li1_33 := Phi(label _15=Li1_36, |abel _27=Li 1_undef)
Li 2_30 := Phi(label _15=Li2_2, |abel _27=Li2_undef)
Li 3_27 := Phi(label _15=Li 3_3, |abel _27=Li 3_undef)
Li4_21 := Phi(label _15=Li 4_24, |abel _27=Li 4_undef)

Figure 10.12: Expression PRE Example Before PRE

10.4. EXAMPLES OF PRE 165

| abel _27

| abel _28
INNT Lr0_0 Lil 1 Li2_2 Li3_3
goto | abel _0 caught by []
| abel _26

N

| abel _0
ifO (Lil_1 == 0) then <block |abel _12 hdr=l abel _27> el se <bl ock |abel _4 hdr=label _27> caught by []

-

Tabel _12
eval (Lil1_14 := 0) | abel _4
eval (Li4_5:= 3) eval (Li4_13 := (Li6_49 := (Li2_2 + Li3_3)))
eval (Li6_47 := (Li2_2 + Li3_3)) goto | abel _15 caught by []
goto |abel _15 caught by []

Tabel_15

Li 6_53 := Phi (I abel _12=Li 6_47, |abel _4=Li 6_49)
Li1_36 := Phi(label _12=Li1_14, |abel _4=Li1_1)
Li4_24 := Phi(label _12=Li 4_5, |abel _4=Li4_13)
eval (Li5_9 := (Li6_53 * Li4_24))
return Li5_9 caught by []

Tabel _29
Li 6_50 := Phi(label _15=Li 6_53, |abel _27=Li 6_undef)
Li1_33 := Phi(label _15=Li1_36, |abel _27=Li1_undef)
Li 2_30 Phi (1 abel _15=Li 2_2, |abel _27=Li 2_undef)
Li 3_27 := Phi(label _15=Li3_3, |abel _27=Li 3_undef)
Li4_21 := Phi(label _15=Li4_24, |abel _27=Li4_undef)

Figure 10.13: Expression PRE Example After PRE

166 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

public class PREPath {
int f(boolean c) {
A a; B b; int y;
b = new BQ);
b.x = 1;
if(c) {
a = b;
y = a.x;
} else {
y =25
}
return(y + b.x);
}
}
class A {
int x;
}
class B extends A { }

The control flow graph for the method f is given in Figure 10.15. The
CFG has been converted into SSA form and expression propagation, dead
code elimination, type inferencing, value number, and value folding have
been performed on it. In this example, the access path b.x (Lr3.8.x) is
redundant in block 31. Note that variable a is an alias for variable b (a was
eliminated from the control flow graph in Figure 10.14 during expression
propagation).

The control flow graph after PRE has been performed on it is given in
Figure 10.15. The partially redundant Lr3_8.x in block 31 has been replaced
with the variable Li5_52. The PRE analysis has recognized that neither Lr3
nor Lr3.x will be modified between the two occurrences and thus creates a
new variable, Li5_52, to hold the value of Li3.x. The occurrences of Li3.x
in block 17 and 31 are replaced with Li5_32.

10.4. EXAMPLES OF PRE

| abel _40

| abel _41

| abel _39

INT Lro_0 Li1_1
goto | abel _0 caught by []

167

Tabel 0
eval (Sr0_2 := new LB;)
(Sr0_4, sr1_6) := dup(Sr0_2)
eval Sr1_6.<init>()
eval (Lr3_8 := Sr0_4)
eval (Lr3_8.x :=1)

ifO (Li1_1 == 0) then <block | abel _28 hdr=l abel _40> el se <bl ock | abel _17 hdr =l abel _40> caught by []

goto | abel _31 caught by []

| abel _28

| abel _17
eval (Li4_21 := Lr3_8.x)
goto | abel _31 caught by []

Li4_30 := Phi (I abel _28=2,
return (Li4_30 + Lr3_8.x) caught by []

| abel _31

I abel _17=Li 4_21)

| abel _42

Figure 10.14: Access Path PRE Example Before PRE

168 CHAPTER 10. PARTIAL REDUNDANCY ELIMINATION

| abel _40

| abel _41
INIT Lro_0 Lil 1
goto |abel _0 caught by []
| abel _39

Tabel 0
eval (Sr0_2 := new LB;)
(Sr0_4, Sr1_6) := dup(Sr0_2)
eval Srl1_6.<init>()
eval (Lr3_8 := Sr0_4)
eval (Lr3_8.x := (Li5.52 :=1))
ifO (Li1_1 == 0) then <bl ock |abel _28 hdr=l abel _40> el se <bl ock | abel _17 hdr=l abel _40> caught by []

| abel _17
eval (Li4_21 := Li5_52)
goto |abel _31 caught by []

| abel _28
goto |abel _31 caught by []

| abel _31
Li4_30 := Phi(label _28=2, |abel _17=Li4_21)
return (Li4_30 + Li5_52) caught by []

| abel _42
Li 5_53 := Phi(label _31=Li5_52, |abel _40=Li 5_undef)

Figure 10.15: Access Path PRE Example After PRE

Bibliography

[BCHS98]

[CCK*97]

[CFR+91]

[CS95]

[DMMOY8]

[GHIV95]

[Hav97]

Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and
L. Taylor Simpson. Practical improvements to the construc-
tion and destruction of static single assignment form. Software—
Practice and Experience, 1(1), January 1998. Revised July 1997.

Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Ray-
mond Lo, and Peng Tu. A new algorithm for partial redundancy
elimination based on SSA form. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation,
volume 32, pages 273-286, May 1997.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kennth Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence graph. In
ACM Transactions on Programming Languages and Systems,
volume 13, pages 451-490, October 1991.

Keith Cooper and Taylor Simpson. Ssc-based value numbering.
Technical Report CRPC-TR95636-S, Rice University, October
1995.

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-
based alias analysis. volume 33, pages 106-117, June 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Weslet, 1995.

Paul Havlak. Nesting of reducible and irreducible loops. ACM
Transactions on Programming Language Systems, 19(4):557-567,
1997.

169

170

[LY96]

[Muc97]

[Nys98]

[PM72]

[PSb94]

[Sim96]

BIBLIOGRAPHY

Tim Lindholm and Frank Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, 1996.

Steven S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, California,
1997.

Nathaniel John Nystrom. Bytecode-Level Analysis and Optimiza-
tion of Java Classes. PhD thesis, Purdue University, August
1998.

Paul W. Purdom and Edward F. Moore. Immediate predom-
inators in a directed graph. Communications of the ACM,
15(8):777-778, August 1972.

Jens Palsberg and Michael I. Schwartzbach. Object-Oriented
Type Systems. Wiley, 1994.

Loren Taylor Simpson. Value-Driven Redundency Elimination.
PhD thesis, Rice University, April 1996.

Index

P-insertion, 145

P-statement, 144

1, 148, 153

¢-blocks, 63

¢-catch statement, 87

¢-return Statement, 87

¢-statement, 42, 85, 102, 117, 119,
153

Filter class, 130

Node’s key, 115

Tuple class, 124

this pointer, 122, 123, 127, 129

aaload instruction, 44

aastore instruction, 45, 114

AbstractCollection class, 22

AbstractList class, 22

AbstractMap class, 22

AbstractSet class, 22

access flags, see modifiers

addCatchPhiOperands method of
SSA, 91

addHandlerEdges method of FlowGraph,
58, 60

addCall method of Tree, 50

addCatchPhi method of SSACon-
structionInfo, 90

addClass method of ClassHierarchy,
133

addInst method of Tree, 43

addInstruction method of MethodEditor,

105

171

addInstruction method of Tree,
43, 59

addLabel method of MethodEditor,
106

addPhi method of SSAConstruction-
Info, 90

AddressStoreStmt class, 73, 104,
107

AddressStoreStmt class, 39, 45

addRetPhis method of SSAConstruction-
Info, 90

addStore method of MemExpr, 44

addStore method of Tree, 46, 49

addType method of ClassHierarchy,
134

alias definition points, 159

allocReturnAddresses method of
CodeGenerator, 104

aload instruction, 44

anewarray instruction, 50

areturn instruction, 41, 107

ArithExpr class, 36, 47, 67, 73,
101, 107, 108, 115, 123,
135, 161

ArithExpr.CMP constant, 135

array, 38

array initialization compaction, 113

arraylength instruction, 36, 51, 108

ArrayLengthExpr class, 36, 51, 67,

73, 108, 121, 136

ArrayList class, 23, 24, 34

172

ArrayRefExpr class, 38, 44, 45,
73, 106, 108, 115, 121, 136,
140, 161

Arrays class, 23

AsbtractSequentialList class, 22

Assign class, 37, 40, 42, 42

astore instruction, 39, 43, 45, 55,
59, 107, 114

aswizzle instruction, 40, 51, 108

aswizzleRange instruction, 40, 51

aswrange instruction, 108

athrow instruction, 41, 51, 57, 58,
108

Attribute class, 17, 17, 18

attributes, 17

aupdate instruction, 51, 107

back edge, 64, 65

baload instruction, 44

basic block, 28, 31, 33, 35, 53

basic block types, 55

bastore instruction, 45

bipush instruction, 113

bloat.editor package, 25-31

bloat.util package, 23-24

Block class, 34, 35, 40, 41, 43, 54,
55, 56, 59, 73, 121, 161

buildLoopTree method of FlowGraph,
66

INDEX

buildTreeForBlock method of Flow-
Graph, 43

buildTrees method of FlowGraph,
57, 59

cache, 25

calcFrontier method of Dominance-
Frontier, 62, 63

CallExpr class, 37, 162

CallMethodExpr class, 37, 50, 73,
106, 108, 115, 121, 137

CallStaticExpr class, 37, 50, 73,
115, 121, 137

caload instruction, 44

can be available, 151

canAlias method of TBAA, 140

CastExpr class, 36, 51, 67, 73, 108,
115, 121, 123, 137, 161

castore instruction, 45

Catch class, 15, 18, 30, 55

catch Block, 90, 91

catch block, 57, 58, 63, 161

catch body, 57, 58

catch targets, 104

CatchExpr class, 36, 57, 73, 109,
115, 121, 136, 162

catchTargets method of JumpStmt,
40

cfg constant, 55

checkcast instruction, 51, 108

buildTreeForBlock method of FlowGrapBheckExpr class, 37, 120, 122, 136,

58, 60

buildBlocks method of FlowGraph,
56

buildFrontier method of Dominance-
Frontier, 62

buildLoopTree method of FlowGraph,
56

buildTree method of DominatorTree,
62

160
children method of SSAGraph, 120
ClassFileLoader class, 16, 17
ClassCastException class, 21
ClassEditor class, 25, 27, 30, 133
ClassFile class, 16, 16, 18
ClassFormatException class, 16
ClassHierarchy class, 25, 133, 140
ClassInfo class, 13, 16, 27

INDEX

ClassInfolLoader class, 13, 25
ClassNotFoundExceptionclass, 16

clearCode method of MethodEditor,

105
coalescing, 102
Code class, 18
code motion, 154
CodeGenerator class, 26, 102
collect occurrences, 155
Collection class, 21, 25, 38, 40
Collections class, 23

collectOccurrences method of SSAPRE,

158

collectVars method of SSA, 89

commit, 25

commit method of ClassFile, 17

CompactArrayInitializer class,
113

Comparable class, 22

Comparator class, 22

compare method of Compator, 22

compare method of IdentityCom-
parator, 24

ComponentVisitor class, 120

computeIntersections method of
Liveness, 99

CondExpr class, 38

conditional jump, 60

conditional statements, 68

congruence of variables, 117

Constant class, 14, 17, 26

constant pool, 14, 26, 28, 113

constant propagation, 125

ConstantExpr class, 36, 43, 44,
47,73, 107, 108, 122, 125,
137, 160

ConstantPool class, 26, 27

ConstantValue class, 18

control flow graph, 23, 42, 48, 53

copy propagation, 125

173

copyBlock method of FlowGraph,
67

createUndefinedStore method of
CodeGenerator, 102

createStore method of CodeGenerator,

102
critical edge, 68, 87, 144

daload instruction, 44

dastore instruction, 45

dcmpg instruction, 48

dcmpl instruction, 48

ddiv instruction, 47

DEAD, 115

dead code elimination, 115

DeadCodeElimination class, 115

debugging information, 28, 30

Def class, 159

DefExpr class, 38, 42, 75, 109, 116

defining expression, 35

defs method of Assign, 40, 42

delayed renaming, 157

design patterns, 30

visitor, 30, 34

dload instruction, 44

dneg instruction, 109

dominance frontier, 54, 62

DominanceFrontier class, 55, 62

dominate, 53

dominator, 61

dominator tree, 53, 55, 61, 127,
148, 153

DominatorTree class, 55, 61

dot, 76

down safe, 148

dreturn instruction, 107

dstore instruction, 44

dup instruction, 35, 40, 43-45, 107,
108, 113, 114, 130

dup?2 instruction, 45, 108

174

dup2_x1 instruction, 45, 108
dup2_x2 instruction, 45, 108
dup_x1 instruction, 45, 46, 108
dup_x2 instruction, 45, 108

editField method of Editor, 25

Editor class, 25, 27, 133, 158

editor constant, 36, 39, 50

entry block, 53, see source block,
104

Enumeration class, 22

equals method of Compator, 22

equals method of NodeComparator,
122

eval, 73

ExceptionKill class, 161, 162

Exceptions class, 19

exceptions, 15, 19, 51, 55, 87

exit block, 53, see sink block, 104

exit node, 53

Expr class, 34, 35, 73, 102

expression, 33, 35

expression propagation, 125

expression tree, 33

ExprInfo class, 159

ExprKey class, 159

ExprPropagation class, 125

ExprStmt class, 39, 44, 45, 47, 50,
73, 106, 107, 116

ExprWorklist class, 159

faload instruction, 44

fastore instruction, 45

fcmpg instruction, 48

fempl instruction, 48

fdiv instruction, 47

Field class, 17, 18

FieldEditor class, 27

FieldExpr class, 38, 49, 67, 74,
106-108, 115, 121, 137, 140,

INDEX

160, 161

FieldInfo class, 13, 27

file package, 16-19

fillArray method of CompactArray-
Initializer, 113, 114

filter method of Peephole, 130

final, 141

FinalChecker class, 160

finalize, 152

finally, 41, 55

FirstOrderChecker class, 160

fload instruction, 44

FlowGraph class, 34, 43, 54, 56,
74, 89, 99, 106, 120, 124,
125, 158

fneg instruction, 109

freturn instruction, 107

fstore instruction, 44

GenericAttribute class, 17

genIfCmpStmt method of CodeGenerator,

106
genlfZeroStmt method of Code-
Generator, 106

genPostponed method of CodeGenerator,

105
getChars method of String, 114
getfield instruction, 49, 108
getstatic instruction, 109
goto instruction, 48, 60, 65, 106,
107
GotoStmt class, 41, 48, 57, 64, 71,
73, 74, 103, 106, 115
Graph class, 23, 56, 99, 133
GraphNode class, 23, 23, 54

Handler class, 55, 56, 58, 65
has real use, 149

hashCode method of NodeComparator,
122, 159

INDEX

hashCode method of Object, 24
HashMap class, 23

Havlak, Paul, 64

hierarchy method of Editor, 25
hypothetical temporary, 144

IdentityComparator class, 24
iaload instruction, 44

iand instruction, 47

iastore instruction, 45, 113
iconst instruction, 113

identityHashCode method of System,

24

if instruction, 28

if_cmpeq instruction, 130

IfCmpStmt class, 41, 48, 69, 106,
122, 123

ifnonnull instruction, 48

ifnull instruction, 48

IfStmt class, 41, 64, 71, 115

IfZeroStmt class, 42, 48, 69, 73,
74, 106, 123

IGNode class, 99

iinc instruction, 29, 47, 107

iload instruction, 44, 100

immediate dominator, 53, 62

ImmutableIterator class, 24

IncOperand class, 29, 47

ineg instruction, 109

inheritance, 133

init block, 56, 58, 59

initialize method of FlowGraph,
61

initLocals method of Tree, 58

InitStmt class, 40, 43, 58, 74, 102,
122, 129, 135

insert flag, 152, 153

insertConditionalStores method

of FlowGraph, 69

175

insertEdgesToSink method of Dominator-
Tree, 61

insertCode method of SSA, 93

instanceof instruction, 38, 52, 108

InstanceOfExpr class, 38, 52, 74,
108, 136, 161

Instruction class, 28, 30, 43, 44,
57, 59, 105, 129

instructions, 28

InstructionVisitor class, 29, 29,
35, 43, 55

interface, 133

interference graph, 99

intersectType method of ClassHierarchy,
134

invokeinterface instruction, 50, 108

invokespecial instruction, 50, 108

invokestatic instruction, 37, 50

invokevirtual instruction, 50, 108

ior instruction, 47

ireturn instruction, 107

TIRREDUCIBLE constant, 66

isDef method of Assign, 43

isFirstOrder method of SSAPRE,
160

ishl instruction, 47

ishr instruction, 47

isReturnAddress method of LocalExpr,
39

istore instruction, 44

iterated dominance frontier, 63, 85,
145, 162

iteratedDomFrontier method of
FlowGraph, 63, 162

Iterator class, 21, 22, 24

iushr instruction, 47

ixor instruction, 47

Jar file, 16
java.class.path, 16

176

java.io.DataIlnputStream class,
16, 18

java.io.File class, 16, 17

java.io.PrintStream class, 76

java.io.PrintWriter class, 34, 73

java.util package, 21-23

JDK1.2, 21, 22

jsr instruction, 41, 43, 48, 55, 57,
59, 60, 66, 107

JsrStmt class, 41, 48, 64, 71, 74,
103, 107, 115

JumpStmt class, 40, 58, 64, 65, 104,
116

key, 161
Kill class, 159, 161
kills, 159

Label class, 28, 29, 30, 43, 54, 57,
59, 60, 129

LabelStmt class, 35, 40, 60, 67,
74, 103, 106, 116

laload instruction, 44

land instruction, 47

lastore instruction, 45

later flag, 151

Idc instruction, 44, 108, 130

Idc_w instruction, 44

LeafExpr class, 39, 43, 67, 69

LineNumberDebugInfo class, 15, 19

LineNumberTable class, 19

LinkedList class, 23

List class, 21, 22

ListIterator class, 21, 22

live, 115

live out, 100

Liveness class, 99

liveness analysis, 99

lload instruction, 44

Ineg instruction, 109

INDEX

loadClass method of ClassFile-
Loader, 16
loadClassFromFile method of Class-
FileLoader, 16
loadClassFromStream method of
ClassFileLoader, 16
local variables, 28, 35, 40, 99
LocalDebugInfo class, 15, 19
LocalExpr class, 35, 39, 39, 43,
44, 46, 47, 74, 91, 99, 107,
109, 115, 121, 122, 126,
135, 160
LocalVariable class, 28, 29, 30,
55
LocalVariableTable class, 19
lookupswitch instruction, 29
loop, 54, 56
depth, 66
header, 64
irreducible, 67
level, 66, 67
reducible, 54, 64, 65
loop header, 54, 57, 64
loop inversion, 67
loop peeling, 67
loop splitting, 64
loop tree, 56, 66, 67
LoopNode class, 66
lor instruction, 47
Ireturn instruction, 107
Ishl instruction, 47
Ishr instruction, 47
Istore instruction, 44
lushr instruction, 47
Ixor instruction, 47

magic number, 17

major number, 17

manip method of Tree, 46
Map class, 22, 23, 42

INDEX

markLive method of DeadCodeE-
limination, 116

maxLocals, 18

maxStack, 18

MemberRef class, 26, 27, 37, 38,
49, 50, 108

MemExpr class, 37, 38, 44

MemRef class, 124

MemRefExpr class, 38, 140, 162

MemRefKill class, 159, 162

Method class, 17, 18

MethodEditor class, 30, 56, 57,
59, 105, 106, 113, 129

MethodInfo class, 13, 30

methodParams method of FlowGraph,
58

methods, 18

minor number, 17

Modifiers class, 14

modifiers, 17, 27

MonitorStmt class, 74

monitorenter instruction, 40, 52, 106

monitorexit instruction, 40, 52, 106

MonitorStmt class, 40, 52, 106,
115, 121, 162

multianewarray instruction, 29, 36,
50

MultiArrayOperand class, 29, 50,
109

multinewarray instruction, 109

munchCode method of MethodEditor,
28, 30

NameAndType class, 26, 27

NaN, 48

Nystrom, Nate, 21

negate method of IfStmt, 41

NegExpr class, 36, 47, 74, 109, 123,
136, 161

new instruction, 36, 50, 109

177

newarray instruction, 36, 50, 109,
114

NewArrayExpr class, 36, 50, 74,
109, 115, 121, 122, 129,
137

newBlock method of FlowGraph,
57

NewExpr class, 36, 50, 74, 109, 115,
121, 122, 129, 137

NewMultiArrayExpr class, 36, 74,
109, 115, 121, 122, 129,
137

next method of Iterator, 22

NO_THREAD, 162

Node class, 33

NodeComparator class, 22, 122

non-local variables, 85, 90

NON_HEADER constant, 66

opcName field of class Opcode, 28
Opcode class, 28

opcodes, see instructions
opcSize field of class Opcode, 28
opcXMap field of class Opcode, 28
operand stack, 34, 44, 46, 59
OperandStack class, 34, 35, 44
Optimistic Table, 124

optimistic table, 119

partial redundancy elimination, 143,
158

path, 56, 57, 59, 90

peeking, 34, 51

PEEL_ALL _LOOPS constant, 67

PEEL_LOOP_LEVEL constant, 67

PEEL_NO_LOOPS constant, 67

peelLoops method of FlowGraph,
67

Peephole class, 129

peephole optimizations, 129

178

persistent checks, 127

persistent store, 51

PersistentCheckElimination class,
127

Phi class, 159

PhiCatchStmt class, 42, 74, 90,
91, 99-102, 125, 126

PhiJoinStmt class, 42, 74, 90-92,
99, 101, 103, 122

PhiReturnStmt class, 90-92

PhiStmt class, 42, 43, 72, 89, 91,
93, 101, 115, 120, 126, 136,
161, 162

PJama, 40

placePhiFunctions method of SSA,
90

placePhis method of SSAPRE, 162

pop instruction, 45, 106, 130

pop2 instruction, 45, 106

post-order traversal, 23

postdominance frontier, 54

postdominate, 53

postdominator tree, 53, 55

Postscript, 76

pre-live, 115

pre-order traversal, 23

predacessors, 23

prependStmt method of Tree, 93

PRESERVE_DEBUG constant, 30

previous method of Iterator, 22

print method of FlowGraph, 76

printGraph method of FlowGraph,
76

PrintVisitor class, 34, 73, 76

prop method of TypeInference,
135

INDEX

protected block, 58

protected region, 91
Purdum-Moore, 61

putfield instruction, 49, 108, 114
putstatic instruction, 109, 114

rc instruction, 37, 105, 106

RCExpr class, 37, 75, 105, 106, 115,
121, 122, 127, 129

RealDef class, 159

red-and-black tree, 22, 23

REDUCIBLE constant, 66

reducible backedge, 64

reducible loop, 54, 64, 65

reference count, 25

reflect constant, 36

reflect package, 13-16

RegisterAllocator class, 101

reload flag, 153, 154

remove method of ImmutableIterator,
24

removeEmptyBlocks method of Code-
Generator, 103

removeUnreachable method of Peephole,
130

rename method of SSA, 91

renaming (SSAPRE), 146

replaceCatchPhis method of Code-
Generator, 102

replaceJoinPhis method of Code-
Generator, 102

replacePhis method of CodeGenerator,
102

ReplaceVisitor class, 33

ReplaceTarget class, 64, 65

ReplaceVisitor class, 34

propagate method of ExprPropagation, residency check, 37, 127

126

ResizableArrayList class, 24, 26

propExpr method of ExprPropagation, ret instruction, 41, 43, 49, 55, 59,

126

64, 107

INDEX

RetStmt class, 41, 49, 64, 71, 73,
75, 103, 107, 115

return instruction, 28, 41, 107

return address, 36

ReturnAddressExpr class, 36, 48,
75, 109, 136

ReturnExprStmt class, 41, 49, 75,
107, 115

ReturnStmt class, 41, 107, 115

reverse roots, 23

roots, 23

saload instruction, 44

sastore instruction, 45

save flag, 153, 154

saveLabels method of FlowGraph,
60

saveStack method of Tree, 35, 43

SCC, 118, 121

SCStmt class, 40, 51, 75, 108, 115

search method of PersistentCheck-
Elimination, 127

search method of SSA, 91

Semi-Pruned SSA Form, 85

Set class, 21, 55

setBlockTypes method of FlowGraph,
66

setClassPath method of Class-
FileLoader, 16

setDef method of Expr, 91

setDomParent method of Block,
62

setOutputDir method of Class-
Fileloader, 16

ShiftExpr class, 75

ShiftExpr class, 37, 47, 109, 123,
135, 161

short, 101

side effects, 121, 129

SideEffectsChecker class, 121

179

SideEffectChecker class, 160

simplify method of ValueNumbering,
124

simplifyControlFlow method of
CodeGenerator, 103

sink block, 56, 58, 60

size method of ResizableArrayList,
24

source block, 56, 58, 66

splitIrreducibleLoops method
of FlowGraph, 65

splitPhiBlocks method of FlowGraph,
64

splitEdge method of FlowGraph,
65, 68

SRStmt class, 40, 51, 75, 108, 115

SSA class, 89

SSA form, 42, 99

SSA graph, 117, 151, 152, 154

SSAConstructionInfo class, 89, 93

SSAGraph class, 120, 124, 135

SSAPRE class, 158

stack, 45

stack height, 30, 106

stack machine, 34

stack variable, 35, 39, 103

StackExpr class, 35, 39, 40, 45,
57, 75, 91, 107, 109, 115,
116, 121

stackHeight method of Type, 26,
34

StackManipStmt class, 40, 43, 45,
75, 108, 115, 120, 121, 136

start method of TypeInference,
135

statement, 33

statements, 39

static single assignment form, see
SSA Form

180

StaticFieldExpr class, 38, 75, 109,
121, 137, 140, 160, 161

Stmt class, 35, 39, 75

StoreExpr class, 35, 37, 43, 44,
47, 57, 69, 75, 101, 102,
106, 107, 115, 116, 120-
122, 126, 136, 159, 160

strictly dominates, 53

String class, 26

Strongly Connected Components,
see SCC

Subroutine class, 39, 41, 43, 48,
55, 55, 57, 59, 90, 107

subroutine, 41, 48, 55, 63, 87

entry, 56
path, 56, 57, 59

successors, 23

supdate instruction, 51, 107

superclass, 17, 27

swap instruction, 40, 45, 108

Switch class, 29, 49, 60

switch, 29, 30, 41, 49, 60

switch instruction, 108

SwitchStmt class, 41, 49, 64, 70,
71, 75, 108, 115, 123

swizzle check, 40

tableswitch instruction, 28, 29, 49

Tarjan’s Algorithm, 119

TBAA class, 140

ThrowStmt class, 41, 51, 75, 108,
115

trace, 54, 56, 99, 129

trans constant, 33, 114

transform method of CompactArray-

Initializer, 113
transform method of DeadCode-
Elimination, 115

INDEX

transform method of Peephole,
129

transform method of SSAPRE, 158

transform method of SSA, 89

transform method of TypeInference,
135

transform method of ValueFolder,
125

transformmethod of ValueNumbering,
124

Tree class, 35, 43, 54, 55, 57-59

tree constant, 37, 45

TreeMap class, 23

TreeVisitor class, 34, 64, 71, 73,
99, 103, 105, 116, 121, 122,
135, 160, 161

try-catch blocks, 30, 40

TryCatch class, 30, 31, 55, 57, 58,
106

Type class, 26, 26, 27, 28, 30, 34,
35, 50, 55, 109, 114, 133

type descriptor, 26, 30, 33

type-based alias analysis, 133

TypeInference class, 134

TypeInferenceVisitor class, 135

TypeNode class, 133

typeToSet method of TypeInference,
135

uc instruction, 37, 105

UCExpr class, 37, 51, 75, 107, 115,
121, 123, 127, 129

UnionFind class, 24, 66

unionType method of ClassHierarchy,
134

update check, 37, 127

use-def, 85

transform method of ExprPropagation, USE_STACK field of class Tree, 35

125

UTF8 String, 14, 114

INDEX

valid table, 119, 124

valnum method of ValueNumbering,
124

value graph, see SSA Graph

value number, 33, 71, 72, 127, 161

value numbering, 117, 124

ValueFolder class, 122, 125

ValueFolding class, 125

ValueNumbering class, 120, 124

VarExpr class, 39, 42, 89, 102, 116,
120, 136, 161

variable congruence, 117

Vector class, 23

VerifyCFG class, 71

verifyTargets method of VerifyCFG,
71

version number, 38

visit method of Instruction, 29

visitChildren method of Node,
120

visitComponents method of SSAGraph,
120

visitConstantExpr method of TreeVisitor,
34

visitExpr method of TreeVisitor,
34

visitor, 30

volatile, 141, 161

wide instruction, 34
width, 102
will be available, 151, 153

ZeroCheckExpr class, 75
ZeroCheckExpr class, 37, 47, 49,
109, 115, 121, 123

zip file, 16

181

