Fork of the Fernflower decompiler
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
fernflower/src/org/jetbrains/java/decompiler/main/ClassesProcessor.java

421 lines
16 KiB

// Copyright 2000-2017 JetBrains s.r.o. Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
package org.jetbrains.java.decompiler.main;
import org.jetbrains.java.decompiler.code.CodeConstants;
import org.jetbrains.java.decompiler.main.collectors.BytecodeSourceMapper;
import org.jetbrains.java.decompiler.main.collectors.CounterContainer;
import org.jetbrains.java.decompiler.main.collectors.ImportCollector;
import org.jetbrains.java.decompiler.main.extern.IFernflowerLogger;
import org.jetbrains.java.decompiler.main.extern.IFernflowerPreferences;
import org.jetbrains.java.decompiler.main.extern.IIdentifierRenamer;
import org.jetbrains.java.decompiler.main.rels.ClassWrapper;
import org.jetbrains.java.decompiler.main.rels.LambdaProcessor;
import org.jetbrains.java.decompiler.main.rels.NestedClassProcessor;
import org.jetbrains.java.decompiler.main.rels.NestedMemberAccess;
import org.jetbrains.java.decompiler.modules.decompiler.exps.InvocationExprent;
import org.jetbrains.java.decompiler.modules.decompiler.vars.VarVersionPair;
import org.jetbrains.java.decompiler.struct.StructClass;
import org.jetbrains.java.decompiler.struct.StructContext;
import org.jetbrains.java.decompiler.struct.StructMethod;
import org.jetbrains.java.decompiler.struct.attr.StructInnerClassesAttribute;
import org.jetbrains.java.decompiler.struct.gen.VarType;
import org.jetbrains.java.decompiler.util.InterpreterUtil;
import java.io.IOException;
import java.util.*;
import java.util.Map.Entry;
public class ClassesProcessor {
public static final int AVERAGE_CLASS_SIZE = 16 * 1024;
private final Map<String, ClassNode> mapRootClasses = new HashMap<>();
private static class Inner {
private String simpleName;
private int type;
private int accessFlags;
private static boolean equal(Inner o1, Inner o2) {
return o1.type == o2.type && o1.accessFlags == o2.accessFlags && InterpreterUtil.equalObjects(o1.simpleName, o2.simpleName);
}
}
public ClassesProcessor(StructContext context) {
Map<String, Inner> mapInnerClasses = new HashMap<>();
Map<String, Set<String>> mapNestedClassReferences = new HashMap<>();
Map<String, Set<String>> mapEnclosingClassReferences = new HashMap<>();
Map<String, String> mapNewSimpleNames = new HashMap<>();
boolean bDecompileInner = DecompilerContext.getOption(IFernflowerPreferences.DECOMPILE_INNER);
// create class nodes
for (StructClass cl : context.getClasses().values()) {
if (cl.isOwn() && !mapRootClasses.containsKey(cl.qualifiedName)) {
if (bDecompileInner) {
StructInnerClassesAttribute inner = (StructInnerClassesAttribute)cl.getAttribute("InnerClasses");
if (inner != null) {
for (StructInnerClassesAttribute.Entry entry : inner.getEntries()) {
String innerName = entry.innerName;
// original simple name
String simpleName = entry.simpleName;
String savedName = mapNewSimpleNames.get(innerName);
if (savedName != null) {
simpleName = savedName;
}
else if (simpleName != null && DecompilerContext.getOption(IFernflowerPreferences.RENAME_ENTITIES)) {
IIdentifierRenamer renamer = DecompilerContext.getPoolInterceptor().getHelper();
if (renamer.toBeRenamed(IIdentifierRenamer.Type.ELEMENT_CLASS, simpleName, null, null)) {
simpleName = renamer.getNextClassName(innerName, simpleName);
mapNewSimpleNames.put(innerName, simpleName);
}
}
Inner rec = new Inner();
rec.simpleName = simpleName;
rec.type = entry.outerNameIdx != 0 ? ClassNode.CLASS_MEMBER : entry.simpleNameIdx != 0 ? ClassNode.CLASS_LOCAL : ClassNode.CLASS_ANONYMOUS;
rec.accessFlags = entry.accessFlags;
// enclosing class
String enclClassName;
if (entry.outerNameIdx != 0) {
enclClassName = entry.enclosingName;
}
else {
enclClassName = cl.qualifiedName;
}
if (!innerName.equals(enclClassName)) { // self reference
StructClass enclosing_class = context.getClasses().get(enclClassName);
if (enclosing_class != null && enclosing_class.isOwn()) { // own classes only
Inner existingRec = mapInnerClasses.get(innerName);
if (existingRec == null) {
mapInnerClasses.put(innerName, rec);
}
else if (!Inner.equal(existingRec, rec)) {
String message = "Inconsistent inner class entries for " + innerName + "!";
DecompilerContext.getLogger().writeMessage(message, IFernflowerLogger.Severity.WARN);
}
// reference to the nested class
Set<String> set = mapNestedClassReferences.get(enclClassName);
if (set == null) {
mapNestedClassReferences.put(enclClassName, set = new HashSet<>());
}
set.add(innerName);
// reference to the enclosing class
set = mapEnclosingClassReferences.get(innerName);
if (set == null) {
mapEnclosingClassReferences.put(innerName, set = new HashSet<>());
}
set.add(enclClassName);
}
}
}
}
}
ClassNode node = new ClassNode(ClassNode.CLASS_ROOT, cl);
node.access = cl.getAccessFlags();
mapRootClasses.put(cl.qualifiedName, node);
}
}
if (bDecompileInner) {
// connect nested classes
for (Entry<String, ClassNode> ent : mapRootClasses.entrySet()) {
// root class?
if (!mapInnerClasses.containsKey(ent.getKey())) {
Set<String> setVisited = new HashSet<>();
LinkedList<String> stack = new LinkedList<>();
stack.add(ent.getKey());
setVisited.add(ent.getKey());
while (!stack.isEmpty()) {
String superClass = stack.removeFirst();
ClassNode superNode = mapRootClasses.get(superClass);
Set<String> setNestedClasses = mapNestedClassReferences.get(superClass);
if (setNestedClasses != null) {
StructClass scl = superNode.classStruct;
StructInnerClassesAttribute inner = (StructInnerClassesAttribute)scl.getAttribute("InnerClasses");
if (inner == null || inner.getEntries().isEmpty()) {
DecompilerContext.getLogger().writeMessage(superClass + " does not contain inner classes!", IFernflowerLogger.Severity.WARN);
continue;
}
for (StructInnerClassesAttribute.Entry entry : inner.getEntries()) {
String nestedClass = entry.innerName;
if (!setNestedClasses.contains(nestedClass)) {
continue;
}
if (!setVisited.add(nestedClass)) {
continue;
}
ClassNode nestedNode = mapRootClasses.get(nestedClass);
if (nestedNode == null) {
DecompilerContext.getLogger().writeMessage("Nested class " + nestedClass + " missing!", IFernflowerLogger.Severity.WARN);
continue;
}
Inner rec = mapInnerClasses.get(nestedClass);
//if ((Integer)arr[2] == ClassNode.CLASS_MEMBER) {
// FIXME: check for consistent naming
//}
nestedNode.simpleName = rec.simpleName;
nestedNode.type = rec.type;
nestedNode.access = rec.accessFlags;
if (nestedNode.type == ClassNode.CLASS_ANONYMOUS) {
StructClass cl = nestedNode.classStruct;
// remove static if anonymous class (a common compiler bug)
nestedNode.access &= ~CodeConstants.ACC_STATIC;
int[] interfaces = cl.getInterfaces();
if (interfaces.length > 0) {
if (interfaces.length > 1) {
String message = "Inconsistent anonymous class definition: " + cl.qualifiedName;
DecompilerContext.getLogger().writeMessage(message, IFernflowerLogger.Severity.WARN);
}
nestedNode.anonymousClassType = new VarType(cl.getInterface(0), true);
}
else {
nestedNode.anonymousClassType = new VarType(cl.superClass.getString(), true);
}
}
else if (nestedNode.type == ClassNode.CLASS_LOCAL) {
// only abstract and final are permitted (a common compiler bug)
nestedNode.access &= (CodeConstants.ACC_ABSTRACT | CodeConstants.ACC_FINAL);
}
superNode.nested.add(nestedNode);
nestedNode.parent = superNode;
nestedNode.enclosingClasses.addAll(mapEnclosingClassReferences.get(nestedClass));
stack.add(nestedClass);
}
}
}
}
}
}
}
public void writeClass(StructClass cl, TextBuffer buffer) throws IOException {
ClassNode root = mapRootClasses.get(cl.qualifiedName);
if (root.type != ClassNode.CLASS_ROOT) {
return;
}
DecompilerContext.getLogger().startReadingClass(cl.qualifiedName);
try {
ImportCollector importCollector = new ImportCollector(root);
DecompilerContext.setImportCollector(importCollector);
DecompilerContext.setCounterContainer(new CounterContainer());
DecompilerContext.setBytecodeSourceMapper(new BytecodeSourceMapper());
new LambdaProcessor().processClass(root);
// add simple class names to implicit import
addClassnameToImport(root, importCollector);
// build wrappers for all nested classes (that's where actual processing takes place)
initWrappers(root);
new NestedClassProcessor().processClass(root, root);
new NestedMemberAccess().propagateMemberAccess(root);
TextBuffer classBuffer = new TextBuffer(AVERAGE_CLASS_SIZE);
new ClassWriter().classToJava(root, classBuffer, 0, null);
int index = cl.qualifiedName.lastIndexOf("/");
if (index >= 0) {
String packageName = cl.qualifiedName.substring(0, index).replace('/', '.');
buffer.append("package ");
buffer.append(packageName);
buffer.append(";");
buffer.appendLineSeparator();
buffer.appendLineSeparator();
}
int import_lines_written = importCollector.writeImports(buffer);
if (import_lines_written > 0) {
buffer.appendLineSeparator();
}
int offsetLines = buffer.countLines();
buffer.append(classBuffer);
if (DecompilerContext.getOption(IFernflowerPreferences.BYTECODE_SOURCE_MAPPING)) {
BytecodeSourceMapper mapper = DecompilerContext.getBytecodeSourceMapper();
mapper.addTotalOffset(offsetLines);
if (DecompilerContext.getOption(IFernflowerPreferences.DUMP_ORIGINAL_LINES)) {
buffer.dumpOriginalLineNumbers(mapper.getOriginalLinesMapping());
}
if (DecompilerContext.getOption(IFernflowerPreferences.UNIT_TEST_MODE)) {
buffer.appendLineSeparator();
mapper.dumpMapping(buffer, true);
}
}
}
finally {
destroyWrappers(root);
DecompilerContext.getLogger().endReadingClass();
}
}
private static void initWrappers(ClassNode node) throws IOException {
if (node.type == ClassNode.CLASS_LAMBDA) {
return;
}
ClassWrapper wrapper = new ClassWrapper(node.classStruct);
wrapper.init();
node.wrapper = wrapper;
for (ClassNode nd : node.nested) {
initWrappers(nd);
}
}
private static void addClassnameToImport(ClassNode node, ImportCollector imp) {
if (node.simpleName != null && node.simpleName.length() > 0) {
imp.getShortName(node.type == ClassNode.CLASS_ROOT ? node.classStruct.qualifiedName : node.simpleName, false);
}
for (ClassNode nd : node.nested) {
addClassnameToImport(nd, imp);
}
}
private static void destroyWrappers(ClassNode node) {
node.wrapper = null;
node.classStruct.releaseResources();
for (ClassNode nd : node.nested) {
destroyWrappers(nd);
}
}
public Map<String, ClassNode> getMapRootClasses() {
return mapRootClasses;
}
public static class ClassNode {
public static final int CLASS_ROOT = 0;
public static final int CLASS_MEMBER = 1;
public static final int CLASS_ANONYMOUS = 2;
public static final int CLASS_LOCAL = 4;
public static final int CLASS_LAMBDA = 8;
public int type;
public int access;
public String simpleName;
public final StructClass classStruct;
private ClassWrapper wrapper;
public String enclosingMethod;
public InvocationExprent superInvocation;
public final Map<String, VarVersionPair> mapFieldsToVars = new HashMap<>();
public VarType anonymousClassType;
public final List<ClassNode> nested = new ArrayList<>();
public final Set<String> enclosingClasses = new HashSet<>();
public ClassNode parent;
public LambdaInformation lambdaInformation;
public boolean namelessConstructorStub = false;
public ClassNode(String content_class_name,
String content_method_name,
String content_method_descriptor,
int content_method_invocation_type,
String lambda_class_name,
String lambda_method_name,
String lambda_method_descriptor,
StructClass classStruct) { // lambda class constructor
this.type = CLASS_LAMBDA;
this.classStruct = classStruct; // 'parent' class containing the static function
lambdaInformation = new LambdaInformation();
lambdaInformation.class_name = lambda_class_name;
lambdaInformation.method_name = lambda_method_name;
lambdaInformation.method_descriptor = lambda_method_descriptor;
lambdaInformation.content_class_name = content_class_name;
lambdaInformation.content_method_name = content_method_name;
lambdaInformation.content_method_descriptor = content_method_descriptor;
lambdaInformation.content_method_invocation_type = content_method_invocation_type;
lambdaInformation.content_method_key =
InterpreterUtil.makeUniqueKey(lambdaInformation.content_method_name, lambdaInformation.content_method_descriptor);
anonymousClassType = new VarType(lambda_class_name, true);
boolean is_method_reference = (content_class_name != classStruct.qualifiedName);
if (!is_method_reference) { // content method in the same class, check synthetic flag
StructMethod mt = classStruct.getMethod(content_method_name, content_method_descriptor);
is_method_reference = !mt.isSynthetic(); // if not synthetic -> method reference
}
lambdaInformation.is_method_reference = is_method_reference;
lambdaInformation.is_content_method_static =
(lambdaInformation.content_method_invocation_type == CodeConstants.CONSTANT_MethodHandle_REF_invokeStatic); // FIXME: redundant?
}
public ClassNode(int type, StructClass classStruct) {
this.type = type;
this.classStruct = classStruct;
simpleName = classStruct.qualifiedName.substring(classStruct.qualifiedName.lastIndexOf('/') + 1);
}
public ClassNode getClassNode(String qualifiedName) {
for (ClassNode node : nested) {
if (qualifiedName.equals(node.classStruct.qualifiedName)) {
return node;
}
}
return null;
}
public ClassWrapper getWrapper() {
ClassNode node = this;
while (node.type == CLASS_LAMBDA) {
node = node.parent;
}
return node.wrapper;
}
public static class LambdaInformation {
public String class_name;
public String method_name;
public String method_descriptor;
public String content_class_name;
public String content_method_name;
public String content_method_descriptor;
public int content_method_invocation_type; // values from CONSTANT_MethodHandle_REF_*
public String content_method_key;
public boolean is_method_reference;
public boolean is_content_method_static;
}
}
}