Mirror of the JODE repository
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
jode/jode/jode/util/AbstractList.java

560 lines
16 KiB

// This interface is taken from the Classpath project.
// Please note the different copyright holder!
// The changes I did is this comment, the package line, some
// imports from java.util and some minor jdk12 -> jdk11 fixes.
// -- Jochen Hoenicke <jochen@gnu.org>
/////////////////////////////////////////////////////////////////////////////
// AbstractList.java -- Abstract implementation of most of List
//
// Copyright (c) 1998 by Stuart Ballard (stuart.ballard@mcmail.com)
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation, version 2. (see COPYING.LIB)
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this program; if not, write to the Free Software Foundation
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////////
// TO DO:
// ~ Doc comments for almost everything.
// ~ Better general commenting
package jode.util;
import java.util.NoSuchElementException;
/**
* A basic implementation of most of the methods in the List interface to make
* it easier to create a List based on a random-access data structure. To
* create an unmodifiable list, it is only necessary to override the size() and
* get(int) methods (this contrasts with all other abstract collection classes
* which require an iterator to be provided). To make the list modifiable, the
* set(int, Object) method should also be overridden, and to make the list
* resizable, the add(int, Object) and remove(int) methods should be overridden
* too. Other methods should be overridden if the backing data structure allows
* for a more efficient implementation. The precise implementation used by
* AbstractList is documented, so that subclasses can tell which methods could
* be implemented more efficiently.
*/
public abstract class AbstractList extends AbstractCollection implements List {
/**
* A count of the number of structural modifications that have been made to
* the list (that is, insertions and removals).
*/
protected transient int modCount = 0;
public abstract Object get(int index);
public void add(int index, Object o) {
throw new UnsupportedOperationException();
}
public boolean add(Object o) {
add(size(), o);
return true;
}
public boolean addAll(int index, Collection c) {
Iterator i = c.iterator();
if (i.hasNext()) {
do {
add(index++, i.next());
} while (i.hasNext());
return true;
} else {
return false;
}
}
public void clear() {
removeRange(0, size());
}
public boolean equals(Object o) {
if (o == this) {
return true;
} else if (!(o instanceof List)) {
return false;
} else {
Iterator i1 = iterator();
Iterator i2 = ((List)o).iterator();
while (i1.hasNext()) {
if (!i2.hasNext()) {
return false;
} else {
Object e = i1.next();
if (e == null ? i2.next() != null : !e.equals(i2.next())) {
return false;
}
}
}
if (i2.hasNext()) {
return false;
} else {
return true;
}
}
}
public int hashCode() {
int hashCode = 1;
Iterator i = iterator();
while (i.hasNext()) {
Object obj = i.next();
hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
}
return hashCode;
}
public int indexOf(Object o) {
int index = 0;
ListIterator i = listIterator();
if (o == null) {
while (i.hasNext()) {
if (i.next() == null) {
return index;
}
index++;
}
} else {
while (i.hasNext()) {
if (o.equals(i.next())) {
return index;
}
index++;
}
}
return -1;
}
public Iterator iterator() {
return new Iterator() {
private int knownMod = modCount;
private int position = 0;
boolean removed = true;
private void checkMod() {
if (knownMod != modCount) {
throw new ConcurrentModificationException();
}
}
public boolean hasNext() {
checkMod();
return position < size();
}
public Object next() {
checkMod();
removed = false;
try {
return get(position++);
} catch (IndexOutOfBoundsException e) {
throw new NoSuchElementException();
}
}
public void remove() {
checkMod();
if (removed) {
throw new IllegalStateException();
}
AbstractList.this.remove(--position);
knownMod = modCount;
removed = true;
}
};
}
public int lastIndexOf(Object o) {
int index = size();
ListIterator i = listIterator(index);
if (o == null) {
while (i.hasPrevious()) {
if (i.previous() == null) {
return index;
}
index--;
}
} else {
while (i.hasPrevious()) {
if (o.equals(i.previous())) {
return index;
}
index--;
}
}
return -1;
}
public ListIterator listIterator() {
return listIterator(0);
}
public ListIterator listIterator(final int index) {
if (index < 0 || index > size()) {
throw new IndexOutOfBoundsException();
}
return new ListIterator() {
private int knownMod = modCount;
private int position = index;
private int lastReturned = -1;
private void checkMod() {
if (knownMod != modCount) {
throw new ConcurrentModificationException();
}
}
public boolean hasNext() {
checkMod();
return position < size();
}
public boolean hasPrevious() {
checkMod();
return position > 0;
}
public Object next() {
checkMod();
if (hasNext()) {
lastReturned = position++;
return get(lastReturned);
} else {
throw new NoSuchElementException();
}
}
public Object previous() {
checkMod();
if (hasPrevious()) {
lastReturned = --position;
return get(lastReturned);
} else {
throw new NoSuchElementException();
}
}
public int nextIndex() {
checkMod();
return position;
}
public int previousIndex() {
checkMod();
return position - 1;
}
public void remove() {
checkMod();
if (lastReturned < 0) {
throw new IllegalStateException();
}
AbstractList.this.remove(lastReturned);
knownMod = modCount;
position = lastReturned;
lastReturned = -1;
}
public void set(Object o) {
checkMod();
if (lastReturned < 0) {
throw new IllegalStateException();
}
AbstractList.this.set(lastReturned, o);
}
public void add(Object o) {
checkMod();
AbstractList.this.add(position++, o);
lastReturned = -1;
knownMod = modCount;
}
};
}
public Object remove(int index) {
throw new UnsupportedOperationException();
}
/**
* Remove a subsection of the list. This is called by the clear and
* removeRange methods of the class which implements subList, which are
* difficult for subclasses to override directly. Therefore, this method
* should be overridden instead by the more efficient implementation, if one
* exists.
* <p>
* This implementation first checks for illegal or out of range arguments. It
* then obtains a ListIterator over the list using listIterator(fromIndex).
* It then calls next() and remove() on this iterator repeatedly, toIndex -
* fromIndex times.
*
* @param fromIndex the index, inclusive, to remove from.
* @param toIndex the index, exclusive, to remove to.
* @exception UnsupportedOperationException if this list does not support
* the removeRange operation.
* @exception IndexOutOfBoundsException if fromIndex > toIndex || fromIndex <
* 0 || toIndex > size().
*/
protected void removeRange(int fromIndex, int toIndex) {
if (fromIndex > toIndex) {
throw new IllegalArgumentException();
} else if (fromIndex < 0 || toIndex > size()) {
throw new IndexOutOfBoundsException();
} else {
ListIterator i = listIterator(fromIndex);
for (int index = fromIndex; index < toIndex; index++) {
i.next();
i.remove();
}
}
}
public Object set(int index, Object o) {
throw new UnsupportedOperationException();
}
private static class SubList extends AbstractList {
// Note that within this class two fields called modCount are inherited -
// one from the superclass, and one from the backing class. These are
// explicitly disambiguated in the code by referring to "this.modCount"
// and "backing.modCount".
// The code uses both these two fields and *no other* to provide fail-fast
// behaviour. For correct operation, the two fields should contain equal
// values. Therefore, if this.modCount != backing.modCount, there
// has been a concurrent modification. This is all achieved purely by using
// the modCount field, precisely according to the docs of AbstractList.
// See the methods upMod and checkMod.
// Jikes doesn't want to access outer instance with AbstractList.this,
// since this is an AbstractList, too. I therefor changed class to static
// and do it by hand. This makes it a lot clearer by the way.
private AbstractList backing;
private final int offset;
private int size;
SubList(AbstractList backing, int fromIndex, int toIndex) {
this.backing = backing;
this.offset = fromIndex;
this.size = toIndex - fromIndex;
upMod();
}
/**
* This method checks the two modCount fields to ensure that there has
* not been a concurrent modification. It throws an exception if there
* has been, and otherwise returns normally.
* Note that since this method is private, it will be inlined.
*
* @exception ConcurrentModificationException if there has been a
* concurrent modification.
*/
private void checkMod() {
if (modCount != backing.modCount) {
throw new ConcurrentModificationException();
}
}
/**
* This method is called after every method that causes a structural
* modification to the backing list. It updates the local modCount field
* to match that of the backing list.
* Note that since this method is private, it will be inlined.
*/
private void upMod() {
modCount = backing.modCount;
}
/**
* This method checks that a value is between 0 and size (inclusive). If
* it is not, an exception is thrown.
* Note that since this method is private, it will be inlined.
*
* @exception IndexOutOfBoundsException if the value is out of range.
*/
private void checkBoundsInclusive(int index) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException();
}
}
/**
* This method checks that a value is between 0 (inclusive) and size
* (exclusive). If it is not, an exception is thrown.
* Note that since this method is private, it will be inlined.
*
* @exception IndexOutOfBoundsException if the value is out of range.
*/
private void checkBoundsExclusive(int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException();
}
}
public int size() {
checkMod();
return size;
}
public Iterator iterator() {
return listIterator();
}
public ListIterator listIterator(final int index) {
checkMod();
checkBoundsInclusive(index);
return new ListIterator() {
ListIterator i = backing.listIterator(index + offset);
int position = index;
public boolean hasNext() {
checkMod();
return position < size;
}
public boolean hasPrevious() {
checkMod();
return position > 0;
}
public Object next() {
if (position < size) {
Object o = i.next();
position++;
return o;
} else {
throw new NoSuchElementException();
}
}
public Object previous() {
if (position > 0) {
Object o = i.previous();
position--;
return o;
} else {
throw new NoSuchElementException();
}
}
public int nextIndex() {
return offset + i.nextIndex();
}
public int previousIndex() {
return offset + i.previousIndex();
}
public void remove() {
i.remove();
upMod();
size--;
position = nextIndex();
}
public void set(Object o) {
i.set(o);
}
public void add(Object o) {
i.add(o);
upMod();
size++;
position++;
}
// Here is the reason why the various modCount fields are mostly
// ignored in this wrapper listIterator.
// IF the backing listIterator is failfast, then the following holds:
// Using any other method on this list will call a corresponding
// method on the backing list *after* the backing listIterator
// is created, which will in turn cause a ConcurrentModException
// when this listIterator comes to use the backing one. So it is
// implicitly failfast.
// If the backing listIterator is NOT failfast, then the whole of
// this list isn't failfast, because the modCount field of the
// backing list is not valid. It would still be *possible* to
// make the iterator failfast wrt modifications of the sublist
// only, but somewhat pointless when the list can be changed under
// us.
// Either way, no explicit handling of modCount is needed.
// However upMod() must be called in add and remove, and size
// must also be updated in these two methods, since they do not go
// through the corresponding methods of the subList.
};
}
public Object set(int index, Object o) {
checkMod();
checkBoundsExclusive(index);
o = backing.set(index + offset, o);
upMod();
return o;
}
public Object get(int index) {
checkMod();
checkBoundsExclusive(index);
return backing.get(index + offset);
}
public void add(int index, Object o) {
checkMod();
checkBoundsInclusive(index);
backing.add(index + offset, o);
upMod();
size++;
}
public Object remove(int index) {
checkMod();
checkBoundsExclusive(index);
Object o = backing.remove(index + offset);
upMod();
size--;
return o;
}
public void removeRange(int fromIndex2, int toIndex2) {
checkMod();
checkBoundsExclusive(fromIndex2);
checkBoundsInclusive(toIndex2);
// this call will catch the toIndex2 < fromIndex2 condition
backing.removeRange(offset + fromIndex2, offset + toIndex2);
upMod();
size -= toIndex2 - fromIndex2;
}
public boolean addAll(int index, Collection c) {
checkMod();
checkBoundsInclusive(index);
int s = backing.size();
boolean result = backing.addAll(offset + index, c);
upMod();
size += backing.size() - s;
return result;
}
}
public List subList(final int fromIndex, final int toIndex) {
return new SubList(this, fromIndex, toIndex);
}
}