Mirror of the JODE repository
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
jode/jode/jode/util/HashMap.java

876 lines
25 KiB

// This class is taken from the Classpath project.
// Please note the different copyright holder!
// The changes I did is this comment, the package line, some
// imports from java.util and some minor jdk12 -> jdk11 fixes.
// -- Jochen Hoenicke <jochen@gnu.org>
/////////////////////////////////////////////////////////////////////////////
// HashMap.java -- a class providing a basic hashtable data structure,
// mapping Object --> Object; part of the JDK1.2 collections
// API
//
// This is a JDK 1.2 compliant version of HashMap.java
//
// Copyright (c) 1998 by Jon A. Zeppieri (jon@eease.com),
// Free Software Foundation, Inc.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation, version 2. (see COPYING.LIB)
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this program; if not, write to the Free Software Foundation
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////////
package jode.util;
import java.util.NoSuchElementException;
import java.io.IOException;
import java.io.Serializable;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
/**
* This class provides a hashtable-backed implementation of the
* Map interface.
*
* It uses a hash-bucket approach; that is, hash
* collisions are handled by linking the new node off of the
* pre-existing node (or list of nodes). In this manner, techniques
* such as linear probing (which can casue primary clustering) and
* rehashing (which does not fit very well with Java's method of
* precomputing hash codes) are avoided.
*
* Under ideal circumstances (no collisions, HashMap offers O(1)
* performance on most operations (<pre>containsValue()</pre> is,
* of course, O(n)). In the worst case (all keys map to the same
* hash code -- very unlikely), most operations are O(n).
*
* HashMap is part of the JDK1.2 Collections API. It differs from
* Hashtable in that it accepts the null key and null values, and it
* does not support "Enumeration views."
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
public class HashMap extends AbstractMap
implements Map, Cloneable, Serializable
{
// STATIC (CLASS) VARIABLES ------------------------------------------
/**
* the default capacity for an instance of HashMap -- I think this
* is low, and perhaps it shoudl be raised; Sun's documentation mildly
* suggests that this (11) is the correct value, though
*/
private static final int DEFAULT_CAPACITY = 11;
/** the default load factor of a HashMap */
private static final float DEFAULT_LOAD_FACTOR = 0.75F;
/** used internally to represent the null key */
private static final HashMap.Null NULL_KEY = new HashMap.Null();
/** used internally to parameterize the creation of set/collection views */
private static final int KEYS = 0;
/** used internally to parameterize the creation of set/collection views */
private static final int VALUES = 1;
/** used internally to parameterize the creation of set/collection views */
private static final int ENTRIES = 2;
private static final long serialVersionUID = 362498820763181265L;
// INSTANCE VARIABLES -------------------------------------------------
/** the capacity of this HashMap: denotes the size of the bucket array */
transient int capacity;
/** the size of this HashMap: denotes the number of key-value pairs */
private transient int size;
/** the load factor of this HashMap: used in computing the threshold
* @serial
*/
float loadFactor;
/* the rounded product of the capacity and the load factor; when the number of
* elements exceeds the threshold, the HashMap calls <pre>rehash()</pre>
* @serial
*/
private int threshold;
/**
* this data structure contains the actual key-value mappings; a
* <pre>BucketList</pre> is a lightweight linked list of "Buckets",
* which, in turn, are linked nodes containing a key-value mapping
* and a reference to the "next" Bucket in the list
*/
private transient Bucket[] buckets;
/**
* counts the number of modifications this HashMap has undergone; used by Iterators
* to know when to throw ConcurrentModificationExceptions (idea ripped-off from
* Stuart Ballard's AbstractList implementation)
*/
private transient int modCount;
// CONSTRUCTORS ---------------------------------------------------------
/**
* construct a new HashMap with the default capacity and the default
* load factor
*/
public HashMap()
{
init(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* construct a new HashMap with a specific inital capacity and load factor
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
* @param initialLoadFactor the load factor of this HashMap
* (a misnomer, really, since the load factor of
* a HashMap does not change)
*
* @throws IllegalArgumentException if (initialCapacity < 0) ||
* (initialLoadFactor > 1.0) ||
* (initialLoadFactor <= 0.0)
*/
public HashMap(int initialCapacity, float initialLoadFactor)
throws IllegalArgumentException
{
if (initialCapacity < 0 || initialLoadFactor <= 0 || initialLoadFactor > 1)
throw new IllegalArgumentException();
else
init(initialCapacity, initialLoadFactor);
}
/**
* construct a new HashMap with a specific inital capacity
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
*
* @throws IllegalArgumentException if (initialCapacity < 0)
*/
public HashMap(int initialCapacity)
throws IllegalArgumentException
{
if (initialCapacity < 0)
throw new IllegalArgumentException();
else
init(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* construct a new HashMap from the given Map
*
* every element in Map t will be put into this new HashMap
*
* @param t a Map whose key / value pairs will be put into
* the new HashMap. <b>NOTE: key / value pairs
* are not cloned in this constructor</b>
*/
public HashMap(Map t)
{
int mapSize = t.size() * 2;
init(((mapSize > DEFAULT_CAPACITY) ? mapSize : DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
putAll(t);
}
// PUBLIC METHODS ---------------------------------------------------------
/** returns the number of kay-value mappings currently in this Map */
public int size()
{
return size;
}
/** returns true if there are no key-value mappings currently in this Map */
public boolean isEmpty()
{
return size == 0;
}
/** empties this HashMap of all elements */
public void clear()
{
size = 0;
modCount++;
buckets = new Bucket[capacity];
}
/**
* returns a shallow clone of this HashMap (i.e. the Map itself is cloned, but
* its contents are not)
*/
public Object clone()
{
Map.Entry entry;
Iterator it = entrySet().iterator();
HashMap clone = new HashMap(capacity, loadFactor);
while (it.hasNext())
{
entry = (Map.Entry) it.next();
clone.internalPut(entry.getKey(), entry.getValue());
}
return clone;
}
/** returns a "set view" of this HashMap's keys */
public Set keySet()
{
return new HashMapSet(KEYS);
}
/** returns a "set view" of this HashMap's entries */
public Set entrySet()
{
return new HashMapSet(ENTRIES);
}
/** returns a "collection view" (or "bag view") of this HashMap's values */
public Collection values()
{
return new HashMapCollection();
}
/**
* returns true if the supplied object equals (<pre>equals()</pre>) a key
* in this HashMap
*
* @param key the key to search for in this HashMap
*/
public boolean containsKey(Object key)
{
return (internalGet(key) != null);
}
/**
* returns true if this HashMap contains a value <pre>o</pre>, such that
* <pre>o.equals(value)</pre>.
*
* @param value the value to search for in this Hashtable
*/
public boolean containsValue(Object value)
{
int i;
Bucket list;
for (i = 0; i < capacity; i++)
{
list = buckets[i];
if (list != null && list.containsValue(value))
return true;
}
return false;
}
/*
* return the value in this Hashtable associated with the supplied key, or <pre>null</pre>
* if the key maps to nothing
*
* @param key the key for which to fetch an associated value
*/
public Object get(Object key)
{
Map.Entry oResult = internalGet(key);
return (oResult == null) ? null : oResult.getValue();
}
/**
* puts the supplied value into the Map, mapped by the supplied key
*
* @param key the HashMap key used to locate the value
* @param value the value to be stored in the HashMap
*/
public Object put(Object key, Object value)
{
return internalPut(key, value);
}
/**
* part of the Map interface; for each Map.Entry in t, the key / value pair is
* added to this Map, <b>using the <pre>put()</pre> method -- this may not be
* you want, so be warned (if you override the put() method, this could lead to
* off behavior)</b>
*
* @param t a Map whose key / value pairs will be added to this Hashtable
*/
public void putAll(Map t)
{
Map.Entry entry;
Iterator it = t.entrySet().iterator();
while (it.hasNext())
{
entry = (Map.Entry) it.next();
put(entry.getKey(), entry.getValue());
}
}
/**
* removes from the HashMap and returns the value which is mapped by the
* supplied key; if the key maps to nothing, then the HashMap remains unchanged,
* and <pre>null</pre> is returned
*
* @param key the key used to locate the value to remove from the HashMap
*/
public Object remove(Object key)
{
Bucket list;
int index;
Object result = null;
if (size > 0)
{
index = hash(((key == null) ? NULL_KEY : key));
list = buckets[index];
if (list != null)
{
result = list.removeByKey(key);
if (result != null)
{
size--;
modCount++;
if (list.first == null)
buckets[index] = null;
}
}
}
return result;
}
// PRIVATE METHODS -----------------------------------------------------------
/**
* puts the given key-value pair into this HashMap; a private method is used
* because it is called by the rehash() method as well as the put() method,
* and if a subclass overrides put(), then rehash would do funky things
* if it called put()
*
* @param key the HashMap key used to locate the value
* @param value the value to be stored in the HashMap
*/
private Object internalPut(Object key, Object value)
{
HashMapEntry entry;
Bucket list;
int hashIndex;
Object oResult;
Object oRealKey = ((key == null) ? NULL_KEY : key);
modCount++;
if (size == threshold)
rehash();
entry = new HashMapEntry(oRealKey, value);
hashIndex = hash(oRealKey);
list = buckets[hashIndex];
if (list == null)
{
list = new Bucket();
buckets[hashIndex] = list;
}
oResult = list.add(entry);
if (oResult == null)
{
size++;
return null;
}
else
{
return ((Map.Entry) oResult).getValue();
}
}
/**
* a private method, called by all of the constructors to initialize a new HashMap
*
* @param initialCapacity the initial capacity of this HashMap (>=0)
* @param initialLoadFactor the load factor of this HashMap
* (a misnomer, really, since the load factor of
* a HashMap does not change)
*/
private void init(int initialCapacity, float initialLoadFactor)
{
size = 0;
modCount = 0;
capacity = initialCapacity;
loadFactor = initialLoadFactor;
threshold = (int) ((float) capacity * loadFactor);
buckets = new Bucket[capacity];
}
/** private -- simply hashes a non-null Object to its array index */
private int hash(Object key)
{
return Math.abs(key.hashCode() % capacity);
}
/**
* increases the size of the HashMap and rehashes all keys to new array indices;
* this is called when the addition of a new value would cause size() > threshold
*/
private void rehash()
{
int i;
Bucket[] data = buckets;
Bucket.Node node;
modCount++;
capacity = (capacity * 2) + 1;
size = 0;
threshold = (int) ((float) capacity * loadFactor);
buckets = new Bucket[capacity];
for (i = 0; i < data.length; i++)
{
if (data[i] != null)
{
node = data[i].first;
while (node != null)
{
internalPut(node.getKey(), node.getValue());
node = node.next;
}
}
}
}
/**
* a private method which does the "dirty work" (or some of it anyway) of fetching a value
* with a key
*
* @param key the key for which to fetch an associated value
*/
private Map.Entry internalGet(Object key)
{
Bucket list;
if (size == 0)
{
return null;
}
else
{
list = buckets[hash(((key == null) ? NULL_KEY : key))];
return (list == null) ? null : list.getEntryByKey(key);
}
}
/**
* a private method used by inner class HashMapSet to implement its own
* <pre>contains(Map.Entry)</pre> method; returns true if the supplied
* key / value pair is found in this HashMap (again, using <pre>equals()</pre>,
* rather than <pre>==</pre>)
*
* @param entry a Map.Entry to match against key / value pairs in
* this HashMap
*/
private boolean containsEntry(Map.Entry entry)
{
Map.Entry oInternalEntry;
if (entry == null)
{
return false;
}
else
{
oInternalEntry = internalGet(entry.getKey());
return (oInternalEntry != null && oInternalEntry.equals(entry));
}
}
/**
* Serializes this object to the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map are emitted
* first. They are followed by size entries, each consisting of
* a key (Object) and a value (Object).
*/
private void writeObject(ObjectOutputStream s)
throws IOException
{
// the fields
s.defaultWriteObject();
s.writeInt(capacity);
s.writeInt(size);
Iterator it = entrySet().iterator();
while (it.hasNext())
{
Map.Entry oEntry = (Map.Entry) it.next();
s.writeObject(oEntry.getKey());
s.writeObject(oEntry.getValue());
}
}
/**
* Deserializes this object from the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map are emitted
* first. They are followed by size entries, each consisting of
* a key (Object) and a value (Object).
*/
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// the fields
s.defaultReadObject();
capacity = s.readInt();
int iLen = s.readInt();
size = 0;
modCount = 0;
buckets = new Bucket[capacity];
for (int i = 0; i < iLen; i++)
{
Object oKey = s.readObject();
Object oValue = s.readObject();
internalPut(oKey, oValue);
}
}
// INNER CLASSES -------------------------------------------------------------
// ---------------------------------------------------------------------------
/**
* an inner class providing a Set view of a HashMap; this implementation is
* parameterized to view either a Set of keys or a Set of Map.Entry objects
*
* Note: a lot of these methods are implemented by AbstractSet, and would work
* just fine without any meddling, but far greater efficiency can be gained by
* overriding a number of them. And so I did.
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
private class HashMapSet extends AbstractSet
implements Set
{
/** the type of this Set view: KEYS or ENTRIES */
private int setType;
/** construct a new HashtableSet with the supplied view type */
HashMapSet(int type)
{
setType = type;
}
/**
* adding an element is unsupported; this method simply throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean add(Object o) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* adding an element is unsupported; this method simply throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean addAll(Collection c) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* clears the backing HashMap; this is a prime example of an overridden implementation
* which is far more efficient than its superclass implementation (which uses an iterator
* and is O(n) -- this is an O(1) call)
*/
public void clear()
{
HashMap.this.clear();
}
/**
* returns true if the supplied object is contained by this Set
*
* @param o an Object being testing to see if it is in this Set
*/
public boolean contains(Object o)
{
if (setType == KEYS)
return HashMap.this.containsKey(o);
else
return (o instanceof Map.Entry) ? HashMap.this.containsEntry((Map.Entry) o) : false;
}
/**
* returns true if the backing HashMap is empty (which is the only case either a KEYS
* Set or an ENTRIES Set would be empty)
*/
public boolean isEmpty()
{
return HashMap.this.isEmpty();
}
/**
* removes the supplied Object from the Set
*
* @param o the Object to be removed
*/
public boolean remove(Object o)
{
if (setType == KEYS)
return (HashMap.this.remove(o) != null);
else
return (o instanceof Map.Entry) ?
(HashMap.this.remove(((Map.Entry) o).getKey()) != null) : false;
}
/** returns the size of this Set (always equal to the size of the backing Hashtable) */
public int size()
{
return HashMap.this.size();
}
/** returns an Iterator over the elements of this Set */
public Iterator iterator()
{
return new HashMapIterator(setType);
}
}
/**
* Like the above Set view, except this one if for values, which are not
* guaranteed to be unique in a Map; this prvides a Bag of values
* in the HashMap
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
private class HashMapCollection extends AbstractCollection
implements Collection
{
/** a trivial contructor for HashMapCollection */
HashMapCollection()
{
}
/**
* adding elements is not supported by this Collection;
* this method merely throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean add(Object o) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/**
* adding elements is not supported by this Collection;
* this method merely throws an exception
*
* @throws UnsupportedOperationException
*/
public boolean addAll(Collection c) throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
/** removes all elements from this Collection (and from the backing HashMap) */
public void clear()
{
HashMap.this.clear();
}
/**
* returns true if this Collection contains at least one Object which equals() the
* supplied Object
*
* @param o the Object to compare against those in the Set
*/
public boolean contains(Object o)
{
return HashMap.this.containsValue(o);
}
/** returns true IFF the Collection has no elements */
public boolean isEmpty()
{
return HashMap.this.isEmpty();
}
/** returns the size of this Collection */
public int size()
{
return HashMap.this.size();
}
/** returns an Iterator over the elements in this Collection */
public Iterator iterator()
{
return new HashMapIterator(VALUES);
}
}
/**
* a class which implements the Iterator interface and is used for
* iterating over HashMaps;
* this implementation is parameterized to give a sequential view of
* keys, values, or entries; it also allows the removal of elements,
* as per the Javasoft spec.
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
class HashMapIterator implements Iterator
{
/** the type of this Iterator: KEYS, VALUES, or ENTRIES */
private int myType;
/**
* the number of modifications to the backing Hashtable for which
* this Iterator can account (idea ripped off from Stuart Ballard)
*/
private int knownMods;
/** the location of our sequential "cursor" */
private int position;
/** the current index of the BucketList array */
private int bucketIndex;
/** a reference, originally null, to the specific Bucket our "cursor" is pointing to */
private Bucket.Node currentNode;
/** a reference to the current key -- used fro removing elements via the Iterator */
private Object currentKey;
/** construct a new HashtableIterator with the supllied type: KEYS, VALUES, or ENTRIES */
HashMapIterator(int type)
{
myType = type;
knownMods = HashMap.this.modCount;
position = 0;
bucketIndex = -1;
currentNode = null;
currentKey = null;
}
/**
* Stuart Ballard's code: if the backing HashMap has been altered through anything
* but <i>this</i> Iterator's <pre>remove()</pre> method, we will give up right here,
* rather than risking undefined behavior
*
* @throws ConcurrentModificationException
*/
private void checkMod()
{
if (knownMods != HashMap.this.modCount)
throw new ConcurrentModificationException();
}
/** returns true if the Iterator has more elements */
public boolean hasNext()
{
checkMod();
return position < HashMap.this.size();
}
/** returns the next element in the Iterator's sequential view */
public Object next()
{
Bucket list = null;
Object result;
checkMod();
try
{
while (currentNode == null)
{
while (list == null)
list = HashMap.this.buckets[++bucketIndex];
currentNode = list.first;
}
currentKey = currentNode.getKey();
result = (myType == KEYS) ? currentKey :
((myType == VALUES) ? currentNode.getValue() : currentNode);
currentNode = currentNode.next;
}
catch(Exception e)
{
throw new NoSuchElementException();
}
position++;
return result;
}
/**
* removes from the backing HashMap the last element which was fetched with the
* <pre>next()</pre> method
*/
public void remove()
{
checkMod();
if (currentKey == null)
{
throw new IllegalStateException();
}
else
{
HashMap.this.remove(currentKey);
knownMods++;
currentKey = null;
}
}
}
/**
* a singleton instance of this class (HashMap.NULL_KEY)
* is used to represent the null key in HashMap objects
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
private static class Null
{
/** trivial constructor */
Null()
{
}
}
/**
* a HashMap version of Map.Entry -- one thing in this implementation is
* HashMap-specific: if the key is HashMap.NULL_KEY, getKey() will return
* null
*
* Simply, a key / value pair
*
* @author Jon Zeppieri
* @version $Revision$
* @modified $Id$
*/
private static class HashMapEntry extends Bucket.Node implements Map.Entry
{
/** construct a new HashMapEntry with the given key and value */
public HashMapEntry(Object key, Object value)
{
super(key, value);
}
/**
* if the key == HashMap.NULL_KEY, null is returned, otherwise the actual
* key is returned
*/
public Object getKey()
{
Object oResult = super.getKey();
return (oResult == HashMap.NULL_KEY) ? null : oResult;
}
}
// EOF -----------------------------------------------------------------------
}