Open-source multiplayer game server compatible with the RuneScape client https://www.openrs2.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

182 lines
6.2 KiB

package dev.openrs2.common.crypto
import org.bouncycastle.asn1.DERNull
import org.bouncycastle.asn1.pkcs.PKCSObjectIdentifiers
import org.bouncycastle.asn1.pkcs.PrivateKeyInfo
import org.bouncycastle.asn1.pkcs.RSAPrivateKey
import org.bouncycastle.asn1.pkcs.RSAPublicKey
import org.bouncycastle.asn1.x509.AlgorithmIdentifier
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo
import org.bouncycastle.crypto.generators.RSAKeyPairGenerator
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters
import org.bouncycastle.crypto.params.RSAKeyParameters
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters
import org.bouncycastle.crypto.util.PrivateKeyInfoFactory
import org.bouncycastle.crypto.util.SubjectPublicKeyInfoFactory
import org.bouncycastle.util.BigIntegers
import org.bouncycastle.util.io.pem.PemObject
import org.bouncycastle.util.io.pem.PemReader
import org.bouncycastle.util.io.pem.PemWriter
import java.io.IOException
import java.math.BigInteger
import java.nio.file.Files
import java.nio.file.Path
object Rsa {
private const val PUBLIC_KEY = "PUBLIC KEY"
private const val PRIVATE_KEY = "PRIVATE KEY"
private val F4 = BigInteger("65537")
/*
* The client writes the output of RSA to a 128 byte buffer. It prefixes
* the output with a single length byte, leaving 127 bytes for the actual
* RSA output.
*
* The maximum output length of RSA encryption is the key size plus one, so
* the maximum key size supported by the client is 126 bytes - or 1008 bits.
*/
private const val KEY_LENGTH = 1008
// 1 in 2^80
private const val CERTAINTY = 80
val RSAPrivateCrtKeyParameters.publicKey
get() = RSAKeyParameters(false, modulus, publicExponent)
fun generateKeyPair(): Pair<RSAKeyParameters, RSAPrivateCrtKeyParameters> {
val generator = RSAKeyPairGenerator()
generator.init(RSAKeyGenerationParameters(F4, secureRandom, KEY_LENGTH, CERTAINTY))
val keyPair = generator.generateKeyPair()
return Pair(keyPair.public as RSAKeyParameters, keyPair.private as RSAPrivateCrtKeyParameters)
}
fun encrypt(plaintext: BigInteger, key: RSAKeyParameters): BigInteger {
require(!key.isPrivate)
return plaintext.modPow(key.exponent, key.modulus)
}
private fun generateBlindingFactor(m: BigInteger): Pair<BigInteger, BigInteger> {
val max = m - BigInteger.ONE
while (true) {
val r = BigIntegers.createRandomInRange(BigInteger.ONE, max, secureRandom)
val rInv = try {
r.modInverse(m)
} catch (ex: ArithmeticException) {
continue
}
return Pair(r, rInv)
}
}
fun decrypt(ciphertext: BigInteger, key: RSAKeyParameters): BigInteger {
require(key.isPrivate)
if (key is RSAPrivateCrtKeyParameters) {
// blind the input
val e = key.publicExponent
val m = key.modulus
val (r, rInv) = generateBlindingFactor(m)
val blindCiphertext = (r.modPow(e, m) * ciphertext).mod(m)
// decrypt using the Chinese Remainder Theorem
val p = key.p
val q = key.q
val dP = key.dp
val dQ = key.dq
val qInv = key.qInv
val mP = (blindCiphertext.mod(p)).modPow(dP, p)
val mQ = (blindCiphertext.mod(q)).modPow(dQ, q)
val h = (qInv * (mP - mQ)).mod(p)
val blindPlaintext = (h * q) + mQ
// unblind output
val plaintext = (blindPlaintext * rInv).mod(m)
// defend against CRT faults (see https://people.redhat.com/~fweimer/rsa-crt-leaks.pdf)
if (plaintext.modPow(e, m) != ciphertext) {
throw IllegalStateException()
}
return plaintext
} else {
return ciphertext.modPow(key.exponent, key.modulus)
}
}
fun readPublicKey(path: Path): RSAKeyParameters {
val der = readSinglePemObject(path, PUBLIC_KEY)
val spki = SubjectPublicKeyInfo.getInstance(der)
validateAlgorithm(spki.algorithm)
val key = RSAPublicKey.getInstance(spki.parsePublicKey())
return RSAKeyParameters(false, key.modulus, key.publicExponent)
}
fun writePublicKey(path: Path, key: RSAKeyParameters) {
val spki = SubjectPublicKeyInfoFactory.createSubjectPublicKeyInfo(key)
return writeSinglePemObject(path, PUBLIC_KEY, spki.encoded)
}
fun readPrivateKey(path: Path): RSAKeyParameters {
val der = readSinglePemObject(path, PRIVATE_KEY)
val pki = PrivateKeyInfo.getInstance(der)
validateAlgorithm(pki.privateKeyAlgorithm)
val key = RSAPrivateKey.getInstance(pki.parsePrivateKey())
return RSAPrivateCrtKeyParameters(
key.modulus,
key.publicExponent,
key.privateExponent,
key.prime1,
key.prime2,
key.exponent1,
key.exponent2,
key.coefficient
)
}
fun writePrivateKey(path: Path, key: RSAKeyParameters) {
val pki = PrivateKeyInfoFactory.createPrivateKeyInfo(key)
return writeSinglePemObject(path, PRIVATE_KEY, pki.encoded)
}
private fun validateAlgorithm(id: AlgorithmIdentifier) {
if (id.algorithm != PKCSObjectIdentifiers.rsaEncryption) {
throw IOException("Invalid algorithm identifier, expecting rsaEncryption")
}
if (id.parameters != DERNull.INSTANCE) {
throw IOException("Invalid algorithm parameters, expecting NULL")
}
}
private fun readSinglePemObject(path: Path, type: String): ByteArray {
PemReader(Files.newBufferedReader(path)).use {
val obj = it.readPemObject()
if (obj == null || obj.type != type || it.readPemObject() != null) {
throw IOException("Expecting single $type PEM object")
}
if (obj.headers.isNotEmpty()) {
throw IOException("PEM headers unsupported")
}
return obj.content
}
}
private fun writeSinglePemObject(path: Path, type: String, content: ByteArray) {
PemWriter(Files.newBufferedWriter(path)).use {
it.writeObject(PemObject(type, content))
}
}
}