Open-source multiplayer game server compatible with the RuneScape client https://www.openrs2.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
openrs2/cache/src/main/kotlin/org/openrs2/cache/BufferedFileChannel.kt

312 lines
9.5 KiB

package org.openrs2.cache
import io.netty.buffer.ByteBuf
import io.netty.buffer.ByteBufAllocator
import java.io.Closeable
import java.io.EOFException
import java.io.Flushable
import java.nio.channels.FileChannel
import kotlin.math.max
import kotlin.math.min
public class BufferedFileChannel(
private val channel: FileChannel,
readBufferSize: Int,
writeBufferSize: Int,
alloc: ByteBufAllocator = ByteBufAllocator.DEFAULT
) : Flushable, Closeable {
private var size = channel.size()
private val readBuffer: ByteBuf
private var readPos = -1L
private val writeBuffer: ByteBuf
private var writePos = -1L
init {
require(readBufferSize >= 0 && writeBufferSize >= 0)
val buf = alloc.buffer(readBufferSize, readBufferSize)
try {
writeBuffer = alloc.buffer(writeBufferSize, writeBufferSize)
readBuffer = buf.retain()
} finally {
buf.release()
}
}
public fun read(pos: Long, dest: ByteBuf, len: Int) {
require(pos >= 0)
require(len <= dest.writableBytes())
val originalDestIndex = dest.writerIndex()
var off = pos
var remaining = len
/*
* Service the whole read from the write buffer, if we can. This code
* isn't necessary, but it is more optimal than following the whole
* sequence of reads below.
*/
val writeLen = writeBuffer.readableBytes()
if (writePos != -1L && off >= writePos && off + remaining <= writePos + writeLen) {
val copyOff = (off - writePos).toInt()
dest.writeBytes(writeBuffer, copyOff, remaining)
return
}
// Service the first part of the read from the read buffer.
if (readPos != -1L && off >= readPos && off < readPos + readBuffer.readableBytes()) {
val copyOff = (off - readPos).toInt()
val copyLen = min(readBuffer.readableBytes() - copyOff, remaining)
dest.writeBytes(readBuffer, copyOff, copyLen)
off += copyLen
remaining -= copyLen
}
if (remaining > readBuffer.capacity()) {
/*
* If the remaining part of the read is larger than the read
* buffer, read directly from the file into the destination buffer.
*/
while (remaining > 0) {
val n = dest.writeBytes(channel, off, remaining)
if (n == -1) {
break
}
off += n
remaining -= n
}
} else if (remaining > 0) {
/*
* Otherwise clear and repopulate the entire read buffer from the
* current position, then copy into the destination buffer.
*/
fill(off)
val copyLen = min(readBuffer.readableBytes(), remaining)
dest.writeBytes(readBuffer, 0, copyLen)
off += copyLen
remaining -= copyLen
}
if (writePos != -1L) {
/*
* If an unflushed write extended the length of the file, fill in
* the gap between the current position and the write position with
* zeroes to reflect what the filesystem would do.
*/
if (off < writePos && remaining > 0) {
val zeroLen = min((writePos - off).toInt(), remaining)
dest.writeZero(zeroLen)
off += zeroLen
remaining -= zeroLen
}
/*
* If a subset of the write buffer overlaps with a subset of the
* destination buffer, overwrite that subset of the destination
* buffer with the write buffer as the write buffer must take
* precedence over the read buffer.
*/
val start = if (writePos >= pos && writePos < pos + len) {
writePos
} else if (pos >= writePos && pos < writePos + writeLen) {
pos
} else {
-1L
}
val end = if (writePos + writeLen > pos && writePos + writeLen <= pos + len) {
writePos + writeLen
} else if (pos + len > writePos && pos + len <= writePos + writeLen) {
pos + len
} else {
-1L
}
if (start != -1L && end != -1L && start < end) {
val destIndex = originalDestIndex + (start - pos).toInt()
val copyOff = (start - writePos).toInt()
val copyLen = (end - start).toInt()
dest.setBytes(destIndex, writeBuffer, copyOff, copyLen)
/*
* If we filled in any remaining bytes in the destination
* buffer from the write buffer then adjust the indexes to take
* that into account.
*/
if (end > off) {
val n = (end - off).toInt()
dest.writerIndex(dest.writerIndex() + n)
off += n
remaining -= n
}
}
}
if (remaining > 0) {
throw EOFException()
}
}
private fun fill(pos: Long) {
require(pos >= 0)
readBuffer.clear()
readPos = pos
var off = pos
while (readBuffer.isWritable) {
val n = readBuffer.writeBytes(channel, off, readBuffer.writableBytes())
if (n == -1) {
break
}
off += n
}
}
public fun write(pos: Long, src: ByteBuf, len: Int) {
require(pos >= 0)
require(len <= src.readableBytes())
size = max(size, pos + len.toLong())
var off = pos
var remaining = len
/*
* If the start of the write doesn't overlap with the write buffer,
* flush the existing write buffer.
*/
if (writePos != -1L && (off < writePos || off > writePos + writeBuffer.readableBytes())) {
flush()
}
/*
* If the start of the write does overlap with the write buffer
* (implicit due to the if condition and flush() call above) and the
* end of the write runs beyond the end of the write buffer, overwrite
* the relevant part of the write buffer with the start of the source
* buffer and then flush the whole write buffer.
*/
if (writePos != -1L && off + remaining > writePos + writeBuffer.capacity()) {
val copyOff = (off - writePos).toInt()
val copyLen = writeBuffer.capacity() - copyOff
src.readBytes(writeBuffer, copyOff, copyLen)
off += copyLen
remaining -= copyLen
writeBuffer.writerIndex(writeBuffer.capacity())
flush()
}
if (remaining > writeBuffer.capacity()) {
/*
* If the remaining part of the write is longer than the write
* buffer, write directly to the underlying file.
*/
val originalSrcIndex = src.readerIndex()
writeFully(off, src, remaining)
/*
* If the write overlaps with the read buffer, update the relevant
* portion of the read buffer. (As we bypassed the write buffer, we
* can't rely on the write buffer taking precedence over the read
* buffer.)
*/
val readLen = readBuffer.readableBytes()
val start = if (off >= readPos && off < readPos + readLen) {
off
} else if (readPos >= off && readPos < off + remaining) {
readPos
} else {
-1L
}
val end = if (off + remaining > readPos && off + remaining <= readPos + readLen) {
off + remaining
} else if (readPos + readLen > off && readPos + readLen <= off + remaining) {
readPos + readLen
} else {
-1L
}
if (start != -1L && end != -1L && start < end) {
val srcIndex = originalSrcIndex + (start - off).toInt()
val copyOff = (start - readPos).toInt()
val copyLen = (end - start).toInt()
src.getBytes(srcIndex, readBuffer, copyOff, copyLen)
}
} else if (remaining > 0) {
// Otherwise write to the write buffer.
if (writePos == -1L) {
writePos = off
}
val copyOff = (off - writePos).toInt()
src.readBytes(writeBuffer, copyOff, remaining)
off += remaining
// Increase write buffer length if necessary.
val newWriteLen = (off - writePos).toInt()
if (newWriteLen > writeBuffer.readableBytes()) {
writeBuffer.writerIndex(newWriteLen)
}
}
}
private fun writeFully(pos: Long, src: ByteBuf, len: Int) {
require(pos >= 0)
require(len <= src.readableBytes())
var off = pos
var remaining = len
while (remaining > 0) {
val n = src.readBytes(channel, off, len)
off += n
remaining -= n
}
}
public fun size(): Long {
return size
}
override fun flush() {
if (writePos != -1L) {
writeFully(writePos, writeBuffer, writeBuffer.readableBytes())
writeBuffer.clear()
writePos = -1L
}
}
override fun close() {
flush()
channel.close()
readBuffer.release()
writeBuffer.release()
}
}